Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Machine Learning Algorithms
  • Table Of Contents Toc
Mastering Machine Learning Algorithms

Mastering Machine Learning Algorithms

By : Giuseppe Bonaccorso
3.4 (5)
close
close
Mastering Machine Learning Algorithms

Mastering Machine Learning Algorithms

3.4 (5)
By: Giuseppe Bonaccorso

Overview of this book

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn v0.19.1. You will also learn how to use Keras and TensorFlow 1.x to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.
Table of Contents (17 chapters)
close
close
13
Deep Belief Networks

Summary


In this chapter, we started the exploration of the deep learning world by introducing the basic concepts that led the first researchers to improve the algorithms until they achieved the top results we have nowadays. The first part explained the structure of a basic artificial neuron, which combines a linear operation followed by an optional non-linear scalar function. A single layer of linear neurons was initially proposed as the first neural network, with the name of the perceptron.

Even though it was quite powerful for many problems, this model soon showed its limitations when working with non-linear separable datasets. A perceptron is not very different from a logistic regression, and there's no concrete reason to employ it. Nevertheless, this model opened the doors to a family of extremely powerful models obtained combining multiple non-linear layers. The multilayer perceptron, which has been proven to be a universal approximator, is able to manage almost any kind of dataset,...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Machine Learning Algorithms
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon