This book is for engineers, data analysts, and data scientists, interested in deep learning, and those looking to explore and implement advanced algorithms with PyTorch. Knowledge of machine learning is helpful but not mandatory. Knowledge of Python programming is expected.

#### Deep Learning with PyTorch

##### By :

#### Deep Learning with PyTorch

##### By:

#### Overview of this book

Deep learning powers the most intelligent systems in the world, such as Google Voice, Siri, and Alexa. Advancements in powerful hardware, such as GPUs, software frameworks such as PyTorch, Keras, TensorFlow, and CNTK along with the availability of big data have made it easier to implement solutions to problems in the areas of text, vision, and advanced analytics.
This book will get you up and running with one of the most cutting-edge deep learning libraries—PyTorch. PyTorch is grabbing the attention of deep learning researchers and data science professionals due to its accessibility, efficiency and being more native to Python way of development. You'll start off by installing PyTorch, then quickly move on to learn various fundamental blocks that power modern deep learning. You will also learn how to use CNN, RNN, LSTM and other networks to solve real-world problems. This book explains the concepts of various state-of-the-art deep learning architectures, such as ResNet, DenseNet, Inception, and Seq2Seq, without diving deep into the math behind them. You will also learn about GPU computing during the course of the book. You will see how to train a model with PyTorch and dive into complex neural networks such as generative networks for producing text and images.
By the end of the book, you'll be able to implement deep learning applications in PyTorch with ease.

Table of Contents (11 chapters)

Preface

Free Chapter

Getting Started with Deep Learning Using PyTorch

Building Blocks of Neural Networks

Diving Deep into Neural Networks

Fundamentals of Machine Learning

Deep Learning for Computer Vision

Deep Learning with Sequence Data and Text

Generative Networks

Modern Network Architectures

What Next?

Other Books You May Enjoy

Customer Reviews