Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Machine Learning for Mobile
  • Table Of Contents Toc
  • Feedback & Rating feedback
Machine Learning for Mobile

Machine Learning for Mobile

By : Revathi Gopalakrishnan, Avinash Venkateswarlu
close
close
Machine Learning for Mobile

Machine Learning for Mobile

By: Revathi Gopalakrishnan, Avinash Venkateswarlu

Overview of this book

Machine learning presents an entirely unique opportunity in software development. It allows smartphones to produce an enormous amount of useful data that can be mined, analyzed, and used to make predictions. This book will help you master machine learning for mobile devices with easy-to-follow, practical examples. You will begin with an introduction to machine learning on mobiles and grasp the fundamentals so you become well-acquainted with the subject. You will master supervised and unsupervised learning algorithms, and then learn how to build a machine learning model using mobile-based libraries such as Core ML, TensorFlow Lite, ML Kit, and Fritz on Android and iOS platforms. In doing so, you will also tackle some common and not-so-common machine learning problems with regard to Computer Vision and other real-world domains. By the end of this book, you will have explored machine learning in depth and implemented on-device machine learning with ease, thereby gaining a thorough understanding of how to run, create, and build real-time machine-learning applications on your mobile devices.
Table of Contents (14 chapters)
close
close
12
Question and Answers

Deep dive into unsupervised learning algorithms

Unsupervised machine learning deals with learning unlabeled data—that is, data that has not been classified or categorized, and arriving at conclusions/patterns in relation to them.

These categories learn from test data that has not been labeled, classified, or categorized. Instead of responding to feedback, unsupervised learning identifies commonalities in the data and reacts based on the presence or absence of such commonalities in each new piece of data.

The input given to the learning algorithm is unlabeled and, hence, there is no straightforward way to evaluate the accuracy of the structure that is produced as output by the algorithm. This is one feature that distinguishes unsupervised learning from supervised learning

The unsupervised algorithms have predictor attributes but NO objective function...
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Machine Learning for Mobile
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon