Book Image

Hands-On Automated Machine Learning

By : Sibanjan Das, Umit Mert Cakmak
Book Image

Hands-On Automated Machine Learning

By: Sibanjan Das, Umit Mert Cakmak

Overview of this book

AutoML is designed to automate parts of Machine Learning. Readily available AutoML tools are making data science practitioners’ work easy and are received well in the advanced analytics community. Automated Machine Learning covers the necessary foundation needed to create automated machine learning modules and helps you get up to speed with them in the most practical way possible. In this book, you’ll learn how to automate different tasks in the machine learning pipeline such as data preprocessing, feature selection, model training, model optimization, and much more. In addition to this, it demonstrates how you can use the available automation libraries, such as auto-sklearn and MLBox, and create and extend your own custom AutoML components for Machine Learning. By the end of this book, you will have a clearer understanding of the different aspects of automated Machine Learning, and you’ll be able to incorporate automation tasks using practical datasets. You can leverage your learning from this book to implement Machine Learning in your projects and get a step closer to winning various machine learning competitions.
Table of Contents (10 chapters)

Necessary feature transformations

As you may have noticed, features are scaled in the previous section before training machine learning algorithms. Feature transformations are usually necessary for ML algorithms to work properly. For example, as a rule of thumb, for ML algorithms that use regularization, normalization is usually applied to features.

The following is a list of use cases where you should transform your features to prepare your dataset to be ready for ML algorithms:

  • SVM expects its inputs to be in the standard range. You should normalize your variables before feeding them into the algorithm.
  • Principal Component Analysis (PCA) helps you to project your features to another space based on variance maximization. You can then select the components cover most of the variance in your dataset, leaving the rest out to reduce dimensionality. When you are working with PCA...