Book Image

Hands-On Convolutional Neural Networks with TensorFlow

By : Iffat Zafar, Giounona Tzanidou, Richard Burton, Nimesh Patel, Leonardo Araujo
Book Image

Hands-On Convolutional Neural Networks with TensorFlow

By: Iffat Zafar, Giounona Tzanidou, Richard Burton, Nimesh Patel, Leonardo Araujo

Overview of this book

Convolutional Neural Networks (CNN) are one of the most popular architectures used in computer vision apps. This book is an introduction to CNNs through solving real-world problems in deep learning while teaching you their implementation in popular Python library - TensorFlow. By the end of the book, you will be training CNNs in no time! We start with an overview of popular machine learning and deep learning models, and then get you set up with a TensorFlow development environment. This environment is the basis for implementing and training deep learning models in later chapters. Then, you will use Convolutional Neural Networks to work on problems such as image classification, object detection, and semantic segmentation. After that, you will use transfer learning to see how these models can solve other deep learning problems. You will also get a taste of implementing generative models such as autoencoders and generative adversarial networks. Later on, you will see useful tips on machine learning best practices and troubleshooting. Finally, you will learn how to apply your models on large datasets of millions of images.
Table of Contents (17 chapters)
Title Page
Copyright and Credits
Packt Upsell

Chapter 7. Transfer Learning

Transfer learning does exactly as the name says. The idea is to transfer something learned from one task and apply it to another. Why? Practically speaking, training entire models from scratch every time is inefficient, and its success depends on many factors. Another important reason is that for certain applications, the datasets that are publicly available are not big enough to train a deep architecture like AlexNet or ResNet without over-fitting, which means failing to generalize. Example applications could be online learning from a few examples given by the user or fine-grained classification, where the variation between the classes is minimal.

A very interesting observation is that final layers can be used to work on different tasks, given that you freeze all the rest, whether it be detection or classification, end up having weights that look very similar.

This leads to the idea of transfer learning. This means a deep architecture that is trained on a significantly...