Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Machine Learning with scikit-learn Quick Start Guide
  • Table Of Contents Toc
Machine Learning with scikit-learn Quick Start Guide

Machine Learning with scikit-learn Quick Start Guide

By : Jolly
4.2 (5)
close
close
Machine Learning with scikit-learn Quick Start Guide

Machine Learning with scikit-learn Quick Start Guide

4.2 (5)
By: Jolly

Overview of this book

Scikit-learn is a robust machine learning library for the Python programming language. It provides a set of supervised and unsupervised learning algorithms. This book is the easiest way to learn how to deploy, optimize, and evaluate all of the important machine learning algorithms that scikit-learn provides. This book teaches you how to use scikit-learn for machine learning. You will start by setting up and configuring your machine learning environment with scikit-learn. To put scikit-learn to use, you will learn how to implement various supervised and unsupervised machine learning models. You will learn classification, regression, and clustering techniques to work with different types of datasets and train your models. Finally, you will learn about an effective pipeline to help you build a machine learning project from scratch. By the end of this book, you will be confident in building your own machine learning models for accurate predictions.
Table of Contents (10 chapters)
close
close

Algorithms that you will learn to implement using scikit-learn

The algorithms that you will learn about in this book are broadly classified into the following two categories:

  • Supervised learning algorithms
  • Unsupervised learning algorithms

Supervised learning algorithms

Supervised learning algorithms can be used to solve both classification and regression problems. In this book, you will learn how to implement some of the most popular supervised machine learning algorithms. Popular supervised machine learning algorithms are the ones that are widely used in industry and research, and have helped us solve a wide range of problems across a wide range of domains. These supervised learning algorithms are as follows:

  • Linear regression: This supervised learning algorithm is used to predict continuous numeric outcomes such as house prices, stock prices, and temperature, to name a few
  • Logistic regression: The logistic learning algorithm is a popular classification algorithm that is especially used in the credit industry in order to predict loan defaults
  • k-Nearest Neighbors: The k-NN algorithm is a classification algorithm that is used to classify data into two or more categories, and is widely used to classify houses into expensive and affordable categories based on price, area, bedrooms, and a whole range of other features
  • Support vector machines: The SVM algorithm is a popular classification algorithm that is used in image and face detection, along with applications such as handwriting recognition
  • Tree-Based algorithms: Tree-based algorithms such as decision trees, Random Forests, and Boosted trees are used to solve both classification and regression problems
  • Naive Bayes: The Naive Bayes classifier is a machine learning algorithm that uses the mathematical model of probability to solve classification problems

Unsupervised learning algorithms

Unsupervised machine learning algorithms are typically used to cluster points of data based on distance. The unsupervised learning algorithm that you will learn about in this book is as follows:

  • k-means: The k-means algorithm is a popular algorithm that is typically used to segment customers into unique categories based on a variety of features, such as their spending habits. This algorithm is also used to segment houses into categories based on their features, such as price and area.

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Machine Learning with scikit-learn Quick Start Guide
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon