Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Deep Learning Algorithms with Python
  • Table Of Contents Toc
Hands-On Deep Learning Algorithms with Python

Hands-On Deep Learning Algorithms with Python

By : Sudharsan Ravichandiran
4.1 (13)
close
close
Hands-On Deep Learning Algorithms with Python

Hands-On Deep Learning Algorithms with Python

4.1 (13)
By: Sudharsan Ravichandiran

Overview of this book

Deep learning is one of the most popular domains in the AI space that allows you to develop multi-layered models of varying complexities. This book introduces you to popular deep learning algorithms—from basic to advanced—and shows you how to implement them from scratch using TensorFlow. Throughout the book, you will gain insights into each algorithm, the mathematical principles involved, and how to implement it in the best possible manner. The book starts by explaining how you can build your own neural networks, followed by introducing you to TensorFlow, the powerful Python-based library for machine learning and deep learning. Moving on, you will get up to speed with gradient descent variants, such as NAG, AMSGrad, AdaDelta, Adam, and Nadam. The book will then provide you with insights into recurrent neural networks (RNNs) and LSTM and how to generate song lyrics with RNN. Next, you will master the math necessary to work with convolutional and capsule networks, widely used for image recognition tasks. You will also learn how machines understand the semantics of words and documents using CBOW, skip-gram, and PV-DM. Finally, you will explore GANs, including InfoGAN and LSGAN, and autoencoders, such as contractive autoencoders and VAE. By the end of this book, you will be equipped with all the skills you need to implement deep learning in your own projects.
Table of Contents (17 chapters)
close
close
Lock Free Chapter
1
Section 1: Getting Started with Deep Learning
4
Section 2: Fundamental Deep Learning Algorithms
10
Section 3: Advanced Deep Learning Algorithms

Summary

We started off the chapter by understanding what deep learning is and how it differs from machine learning. Later, we learned how biological and artificial neurons work, and then we explored what is input, hidden, and output layer in the ANN, and also several types of activation functions.

Going ahead, we learned what forward propagation is and how ANN uses forward propagation to predict the output. After this, we learned how ANN uses backpropagation for learning and optimizing. We learned an optimization algorithm called gradient descent that helps the neural network to minimize the loss and make correct predictions. We also learned about gradient checking, a technique that is used to evaluate the gradient descent. At the end of the chapter, we implemented a neural network from scratch to perform the XOR gate operation.

In the next chapter, we will learn about one of...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On Deep Learning Algorithms with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon