Book Image

Hands-On Machine Learning for Algorithmic Trading

By : Stefan Jansen
Book Image

Hands-On Machine Learning for Algorithmic Trading

By: Stefan Jansen

Overview of this book

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies. This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You’ll practice the ML work?ow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies. Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym.
Table of Contents (23 chapters)

Sentiment analysis with Doc2vec

Text classification requires combining multiple word embeddings. A common approach is to average the embedding vectors for each word in the document. This uses information from all embeddings and effectively uses vector addition to arrive at a different location point in the embedding space. However, relevant information about the order of words is lost.

By contrast, the state-of-the-art generation of embeddings for pieces of text such as a paragraph or a product review is to use the document-embedding model Doc2vec. This model was developed by the Word2vec authors shortly after publishing their original contribution.

Similar to Word2vec, there are also two flavors of Doc2vec:

  • The distributed bag of words (DBOW) model corresponds to the Word2vec CBOW model. The document vectors result from training a network in the synthetic task of predicting...