Book Image

Mastering Machine Learning on AWS

By : Dr. Saket S.R. Mengle, Maximo Gurmendez
Book Image

Mastering Machine Learning on AWS

By: Dr. Saket S.R. Mengle, Maximo Gurmendez

Overview of this book

Amazon Web Services (AWS) is constantly driving new innovations that empower data scientists to explore a variety of machine learning (ML) cloud services. This book is your comprehensive reference for learning and implementing advanced ML algorithms in AWS cloud. As you go through the chapters, you’ll gain insights into how these algorithms can be trained, tuned, and deployed in AWS using Apache Spark on Elastic Map Reduce (EMR), SageMaker, and TensorFlow. While you focus on algorithms such as XGBoost, linear models, factorization machines, and deep nets, the book will also provide you with an overview of AWS as well as detailed practical applications that will help you solve real-world problems. Every application includes a series of companion notebooks with all the necessary code to run on AWS. In the next few chapters, you will learn to use SageMaker and EMR Notebooks to perform a range of tasks, right from smart analytics and predictive modeling through to sentiment analysis. By the end of this book, you will be equipped with the skills you need to effectively handle machine learning projects and implement and evaluate algorithms on AWS.
Table of Contents (24 chapters)
Free Chapter
1
Section 1: Machine Learning on AWS
3
Section 2: Implementing Machine Learning Algorithms at Scale on AWS
9
Section 3: Deep Learning
13
Section 4: Integrating Ready-Made AWS Machine Learning Services
17
Section 5: Optimizing and Deploying Models through AWS
Appendix: Getting Started with AWS

Summary

Amazon Rekognition allows data scientists to access high-quality image recognition algorithms using API calls. One of the biggest obstacles in using deep learning is generating large datasets and running expensive GPU-based clusters to train the models. AWS Rekognition makes it easier for users to access these features without the prerequisite expertise required to train such models. The application developers can concentrate on building functionality without having to spend a lot of time on deep learning tasks. In this chapter, we studied various tools that are available in Amazon Rekognition and also learned how to make API calls and read the response JSON. Moreover, we also studied various applications where these tools can be useful.

In the next chapter, we will demonstrate how you can build automated chatbots using a service called Amazon Lex.

...