Book Image

Hands-On Generative Adversarial Networks with Keras

By : Rafael Valle
Book Image

Hands-On Generative Adversarial Networks with Keras

By: Rafael Valle

Overview of this book

Generative Adversarial Networks (GANs) have revolutionized the fields of machine learning and deep learning. This book will be your first step toward understanding GAN architectures and tackling the challenges involved in training them. This book opens with an introduction to deep learning and generative models and their applications in artificial intelligence (AI). You will then learn how to build, evaluate, and improve your first GAN with the help of easy-to-follow examples. The next few chapters will guide you through training a GAN model to produce and improve high-resolution images. You will also learn how to implement conditional GANs that enable you to control characteristics of GAN output. You will build on your knowledge further by exploring a new training methodology for progressive growing of GANs. Moving on, you'll gain insights into state-of-the-art models in image synthesis, speech enhancement, and natural language generation using GANs. In addition to this, you'll be able to identify GAN samples with TequilaGAN. By the end of this book, you will be well-versed with the latest advancements in the GAN framework using various examples and datasets, and you will have developed the skills you need to implement GAN architectures for several tasks and domains, including computer vision, natural language processing (NLP), and audio processing. Foreword by Ting-Chun Wang, Senior Research Scientist, NVIDIA
Table of Contents (14 chapters)
Free Chapter
Section 1: Introduction and Environment Setup
Section 2: Training GANs
Section 3: Application of GANs in Computer Vision, Natural Language Processing, and Audio

Progressive Growing of GANs

Progressive Growing of GANs offers a methodology that circumvents many of the problems related to GANs. It was the first publication to produce CelebA images using a resolution of 1024 by 1024; this was a task that was very challenging at the time the paper was published:

Samples generated with Progressive Growing of GANs. Source: Progressive Growing of GANs for Improved Quality, Stability and Variation.

As the name suggests, the methodology used in Progressive Growing of GANs consists of gradually increasing the resolution of the inputs, in this case, images, which are being handled or synthesized by the discriminator and generator. Likewise, layers are added to the discriminator and the generator in order to support higher resolutions.

In practice, instead of adding layers, a user defines the full graph of the...