Book Image

Hands-On Ensemble Learning with Python

By : George Kyriakides, Konstantinos G. Margaritis
Book Image

Hands-On Ensemble Learning with Python

By: George Kyriakides, Konstantinos G. Margaritis

Overview of this book

Ensembling is a technique of combining two or more similar or dissimilar machine learning algorithms to create a model that delivers superior predictive power. This book will demonstrate how you can use a variety of weak algorithms to make a strong predictive model. With its hands-on approach, you'll not only get up to speed with the basic theory but also the application of different ensemble learning techniques. Using examples and real-world datasets, you'll be able to produce better machine learning models to solve supervised learning problems such as classification and regression. In addition to this, you'll go on to leverage ensemble learning techniques such as clustering to produce unsupervised machine learning models. As you progress, the chapters will cover different machine learning algorithms that are widely used in the practical world to make predictions and classifications. You'll even get to grips with the use of Python libraries such as scikit-learn and Keras for implementing different ensemble models. By the end of this book, you will be well-versed in ensemble learning, and have the skills you need to understand which ensemble method is required for which problem, and successfully implement them in real-world scenarios.
Table of Contents (20 chapters)
Free Chapter
1
Section 1: Introduction and Required Software Tools
4
Section 2: Non-Generative Methods
7
Section 3: Generative Methods
11
Section 4: Clustering
13
Section 5: Real World Applications

Summary

In this chapter, we discussed Random Forests, an ensemble method utilizing decision trees as its base learners. We presented two basic methods of constructing the trees: the conventional Random Forests approach, where a subset of features is considered at each split, as well as Extra Trees, where the split points are chosen almost randomly. We discussed the basic characteristics of the ensemble method. Furthermore, we presented regression and classification examples using the scikit-learn implementations of Random Forests and Extra Trees. The key points of this chapter that summarize its contents are provided below.

Random Forests use bagging in order to create train sets for their base learners. At each node, each tree considers only a subset of the available features and computes the optimal feature/split point combination. The number of features to consider at each...