Book Image

Hands-On Deep Learning for IoT

By : Dr. Mohammad Abdur Razzaque, Md. Rezaul Karim
Book Image

Hands-On Deep Learning for IoT

By: Dr. Mohammad Abdur Razzaque, Md. Rezaul Karim

Overview of this book

Artificial Intelligence is growing quickly, which is driven by advancements in neural networks(NN) and deep learning (DL). With an increase in investments in smart cities, smart healthcare, and industrial Internet of Things (IoT), commercialization of IoT will soon be at peak in which massive amounts of data generated by IoT devices need to be processed at scale. Hands-On Deep Learning for IoT will provide deeper insights into IoT data, which will start by introducing how DL fits into the context of making IoT applications smarter. It then covers how to build deep architectures using TensorFlow, Keras, and Chainer for IoT. You’ll learn how to train convolutional neural networks(CNN) to develop applications for image-based road faults detection and smart garbage separation, followed by implementing voice-initiated smart light control and home access mechanisms powered by recurrent neural networks(RNN). You’ll master IoT applications for indoor localization, predictive maintenance, and locating equipment in a large hospital using autoencoders, DeepFi, and LSTM networks. Furthermore, you’ll learn IoT application development for healthcare with IoT security enhanced. By the end of this book, you will have sufficient knowledge need to use deep learning efficiently to power your IoT-based applications for smarter decision making.
Table of Contents (15 chapters)
Free Chapter
1
Section 1: IoT Ecosystems, Deep Learning Techniques, and Frameworks
4
Section 2: Hands-On Deep Learning Application Development for IoT
10
Section 3: Advanced Aspects and Analytics in IoT

Use case two — IoT-based smart classroom

The higher education dropout rate is increasing worldwide. For example, dropout rates among UK university students have increased for the third consecutive year. Three of the top eight reasons for these dropouts are:

  • Lack of quality time with teachers and counselors
  • Demotivating school environment
  • Lack of student support

One of the key challenges in addressing these issues is knowing the students (such as knowing whether a student is following a topic or not) and delivering lectures/tutorials and other support accordingly. One potential approach is to know the emotions of the students, which is challenging in a large classroom, computer lab, or in e-learning environments. The use of technologies (including IoT with the support of DL models) can help to recognize emotion using facial expression and/or speech. The second use case...