Book Image

Architects of Intelligence

By : Martin Ford
Book Image

Architects of Intelligence

By: Martin Ford

Overview of this book

How will AI evolve and what major innovations are on the horizon? What will its impact be on the job market, economy, and society? What is the path toward human-level machine intelligence? What should we be concerned about as artificial intelligence advances? Architects of Intelligence contains a series of in-depth, one-to-one interviews where New York Times bestselling author, Martin Ford, uncovers the truth behind these questions from some of the brightest minds in the Artificial Intelligence community. Martin has wide-ranging conversations with twenty-three of the world's foremost researchers and entrepreneurs working in AI and robotics: Demis Hassabis (DeepMind), Ray Kurzweil (Google), Geoffrey Hinton (Univ. of Toronto and Google), Rodney Brooks (Rethink Robotics), Yann LeCun (Facebook) , Fei-Fei Li (Stanford and Google), Yoshua Bengio (Univ. of Montreal), Andrew Ng (AI Fund), Daphne Koller (Stanford), Stuart Russell (UC Berkeley), Nick Bostrom (Univ. of Oxford), Barbara Grosz (Harvard), David Ferrucci (Elemental Cognition), James Manyika (McKinsey), Judea Pearl (UCLA), Josh Tenenbaum (MIT), Rana el Kaliouby (Affectiva), Daniela Rus (MIT), Jeff Dean (Google), Cynthia Breazeal (MIT), Oren Etzioni (Allen Institute for AI), Gary Marcus (NYU), and Bryan Johnson (Kernel). Martin Ford is a prominent futurist, and author of Financial Times Business Book of the Year, Rise of the Robots. He speaks at conferences and companies around the world on what AI and automation might mean for the future. This is the hardcover edition of the book.
Table of Contents (28 chapters)
Architects of Intelligence
When Will Human-Level AI be Achieved? Survey Results

Chapter 1. MARTIN FORD


Artificial intelligence is rapidly transitioning from the realm of science fiction to the reality of our daily lives. Our devices understand what we say, speak to us, and translate between languages with ever-increasing fluency. AI-powered visual recognition algorithms are outperforming people and beginning to find applications in everything from self-driving cars to systems that diagnose cancer in medical images. Major media organizations increasingly rely on automated journalism to turn raw data into coherent news stories that are virtually indistinguishable from those written by human journalists.

The list goes on and on, and it is becoming evident that AI is poised to become one of the most important forces shaping our world. Unlike more specialized innovations, artificial intelligence is becoming a true general-purpose technology. In other words, it is evolving into a utility—not unlike electricity—that is likely to ultimately scale across every industry, every sector of our economy, and nearly every aspect of science, society and culture.

The demonstrated power of artificial intelligence has, in the last few years, led to massive media exposure and commentary. Countless news articles, books, documentary films and television programs breathlessly enumerate AI’s accomplishments and herald the dawn of a new era. The result has been a sometimes incomprehensible mixture of careful, evidence-based analysis, together with hype, speculation and what might be characterized as outright fear-mongering. We are told that fully autonomous self-driving cars will be sharing our roads in just a few years—and that millions of jobs for truck, taxi and Uber drivers are on the verge of vaporizing. Evidence of racial and gender bias has been detected in certain machine learning algorithms, and concerns about how AI-powered technologies such as facial recognition will impact privacy seem well-founded. Warnings that robots will soon be weaponized, or that truly intelligent (or superintelligent) machines might someday represent an existential threat to humanity, are regularly reported in the media. A number of very prominent public figures—none of whom are actual AI experts—have weighed in. Elon Musk has used especially extreme rhetoric, declaring that AI research is “summoning the demon” and that “AI is more dangerous than nuclear weapons.” Even less volatile individuals, including Henry Kissinger and the late Stephen Hawking, have issued dire warnings.

The purpose of this book is to illuminate the field of artificial intelligence—as well as the opportunities and risks associated with it—by having a series of deep, wide-ranging conversations with some of the world’s most prominent AI research scientists and entrepreneurs. Many of these people have made seminal contributions that directly underlie the transformations we see all around us; others have founded companies that are pushing the frontiers of AI, robotics and machine learning.

Selecting a list of the most prominent and influential people working in a field is, of course, a subjective exercise, and without doubt there are many other people who have made, or are making, critical contributions to the advancement of AI. Nonetheless, I am confident that if you were to ask nearly anyone with a deep knowledge of the field to compose a list of the most important minds who have shaped contemporary research in artificial intelligence, you would receive a list of names that substantially overlaps with the individuals interviewed in this book. The men and women I have included here are truly the architects of machine intelligence—and, by extension, of the revolution it will soon unleash.

The conversations recorded here are generally open-ended, but are designed to address some of the most pressing questions that face us as artificial intelligence continues to advance: What specific AI approaches and technologies are most promising, and what kind of breakthroughs might we see in the coming years? Are true thinking machines—or human-level AI—a real possibility and how soon might such a breakthrough occur? What risks, or threats, associated with artificial intelligence should we be genuinely concerned about? And how should we address those concerns? Is there a role for government regulation? Will AI unleash massive economic and job market disruption, or are these concerns overhyped? Could superintelligent machines someday break free of our control and pose a genuine threat? Should we worry about an AI “arms race,” or that other countries with authoritarian political systems, particularly China, may eventually take the lead?

It goes without saying that no one really knows the answers to these questions. No one can predict the future. However, the AI experts I’ve spoken to here do know more about the current state of the technology, as well as the innovations on the horizon, than virtually anyone else. They often have decades of experience and have been instrumental in creating the revolution that is now beginning to unfold. Therefore, their thoughts and opinions deserve to be given significant weight. In addition to my questions about the field of artificial intelligence and its future, I have also delved into the backgrounds, career trajectories and current research interests of each of these individuals, and I believe their diverse origins and varied paths to prominence will make for fascinating and inspiring reading.

Artificial intelligence is a broad field of study with a number of subdisciplines, and many of the researchers interviewed here have worked in multiple areas. Some also have deep experience in other fields, such as the study of human cognition. Nonetheless, what follows is a brief attempt to create a very rough road map showing how the individuals interviewed here relate to the most important recent innovations in AI research and to the challenges that lie ahead. More background information about each person is available in his or her biography, which is located immediately after the interview.

The vast majority of the dramatic advances we’ve seen over the past decade or so—everything from image and facial recognition, to language translation, to AlphaGo’s conquest of the ancient game of Go—are powered by a technology known as deep learning, or deep neural networks. Artificial neural networks, in which software roughly emulates the structure and interaction of biological neurons in the brain, date back at least to the 1950s. Simple versions of these networks are able to perform rudimentary pattern recognition tasks, and in the early days generated significant enthusiasm among researchers. By the 1960s, however—at least in part as the direct result of criticism of the technology by Marvin Minsky, one of the early pioneers of AI—neural networks fell out of favor and were almost entirely dismissed as researchers embraced other approaches.

Over a roughly 20-year period beginning in the 1980s, a very small group of research scientists continued to believe in and advance the technology of neural networks. Foremost among these were Geoffrey Hinton, Yoshua Bengio and Yann LeCun. These three men not only made seminal contributions to the mathematical theory underlying deep learning, they also served as the technology’s primary evangelists. Together they refined ways to construct much more sophisticated—or “deep”—networks with many layers of artificial neurons. A bit like the medieval monks who preserved and copied classical texts, Hinton, Bengio and LeCun ushered neural networks through their own dark age—until the decades-long exponential advance of computing power, together with a nearly incomprehensible increase in the amount of data available, eventually enabled a “deep learning renaissance.” That progress became an outright revolution in 2012, when a team of Hinton’s graduate students from the University of Toronto entered a major image recognition contest and decimated the competition using deep learning.

In the ensuing years, deep learning has become ubiquitous. Every major technology company—Google, Facebook, Microsoft, Amazon, Apple, as well as leading Chinese firms like Baidu and Tencent—have made huge investments in the technology and leveraged it across their businesses. The companies that design microprocessor and graphics (or GPU) chips, such as NVIDIA and Intel, have also seen their businesses transformed as they rush to build hardware optimized for neural networks. Deep learning—at least so far—is the primary technology that has powered the AI revolution.

This book includes conversations with the three deep learning pioneers, Hinton, LeCun and Bengio, as well as with several other very prominent researchers at the forefront of the technology. Andrew Ng, Fei-Fei Li, Jeff Dean and Demis Hassabis have all advanced neural networks in areas like web search, computer vision, self-driving cars and more general intelligence. They are also recognized leaders in teaching, managing research organizations, and entrepreneurship centered on deep learning technology.

The remaining conversations in this book are generally with people who might be characterized as deep learning agnostics, or perhaps even critics. All would acknowledge the remarkable achievements of deep neural networks over the past decade, but they would likely argue that deep learning is just “one tool in the toolbox” and that continued progress will require integrating ideas from other spheres of artificial intelligence. Some of these, including Barbara Grosz and David Ferrucci, have focused heavily on the problem of understanding natural language. Gary Marcus and Josh Tenenbaum have devoted large portions of their careers to studying human cognition. Others, including Oren Etzioni, Stuart Russell and Daphne Koller, are AI generalists or have focused on using probabilistic techniques. Especially distinguished among this last group is Judea Pearl, who in 2012 won the Turing Award—essentially the Nobel Prize of computer science—in large part for his work on probabilistic (or Bayesian) approaches in AI and machine learning.

Beyond this very rough division defined by their attitude toward deep learning, several of the researchers I spoke to have focused on more specific areas. Rodney Brooks, Daniela Rus and Cynthia Breazeal are all recognized leaders in robotics. Breazeal along with Rana El Kaliouby are pioneers in building systems that understand and respond to emotion, and therefore have the ability to interact socially with people. Bryan Johnson has founded a startup company, Kernel, which hopes to eventually use technology to enhance human cognition.

There are three general areas that I judged to be of such high interest that I delved into them in every conversation. The first of these concerns the potential impact of AI and robotics on the job market and the economy. My own view is that as artificial intelligence gradually proves capable of automating nearly any routine, predictable task—regardless of whether it is blue or white collar in nature—we will inevitably see rising inequality and quite possibly outright unemployment, at least among certain groups of workers. I laid out this argument in my 2015 book, Rise of the Robots: Technology and the Threat of a Jobless Future.

The individuals I spoke to offered a variety of viewpoints about this potential economic disruption and the type of policy solutions that might address it. In order to dive deeper into this topic, I turned to James Manyika, the Chairman of the McKinsey Global Institute. Manyika offers a unique perspective as an experienced AI and robotics researcher who has lately turned his efforts toward understanding the impact of these technologies on organizations and workplaces. The McKinsey Global Institute is a leader in conducting research into this area, and this conversation includes many important insights into the nature of the unfolding workplace disruption.

The second question I directed at everyone concerns the path toward human-level AI, or what is typically called Artificial General Intelligence (AGI). From the very beginning, AGI has been the holy grail of the field of artificial intelligence. I wanted to know what each person thought about the prospect for a true thinking machine, the hurdles that would need to be surmounted and the timeframe for when it might be achieved. Everyone had important insights, but I found three conversations to be especially interesting: Demis Hassabis discussed efforts underway at DeepMind, which is the largest and best funded initiative geared specifically toward AGI. David Ferrucci, who led the team that created IBM Watson, is now the CEO of Elemental Cognition, a startup that hopes to achieve more general intelligence by leveraging an understanding of language. Ray Kurzweil, who now directs a natural language-oriented project at Google, also had important ideas on this topic (as well as many others). Kurzweil is best known for his 2005 book, The Singularity is Near. In 2012, he published a book on machine intelligence, How to Create a Mind, which caught the attention of Larry Page and led to his employment at Google.

As part of these discussions, I saw an opportunity to ask this group of extraordinarily accomplished AI researchers to give me a guess for just when AGI might be realized. The question I asked was, “What year do you think human-level AI might be achieved, with a 50 percent probability?” Most of the participants preferred to provide their guesses anonymously. I have summarized the results of this very informal survey in a section at the end of this book. Two people were willing to guess on the record, and these will give you a preview of the wide range of opinions. Ray Kurzweil believes, as he has stated many times previously, that human-level AI will be achieved around 2029—or just eleven years from the time of this writing. Rodney Brooks, on the other hand, guessed the year 2200, or more than 180 years in the future. Suffice it to say that one of the most fascinating aspects of the conversations reported here is the starkly differing views on a wide range of important topics.

The third area of discussion involves the varied risks that will accompany progress in artificial intelligence in both the immediate future and over much longer time horizons. One threat that is already becoming evident is the vulnerability of interconnected, autonomous systems to cyber attack or hacking. As AI becomes ever more integrated into our economy and society, solving this problem will be one of the most critical challenges we face. Another immediate concern is the susceptibility of machine learning algorithms to bias, in some cases on the basis of race or gender. Many of the individuals I spoke with emphasized the importance of addressing this issue and told of research currently underway in this area. Several also sounded an optimistic note—suggesting that AI may someday prove to be a powerful tool to help combat systemic bias or discrimination.

A danger that many researchers are passionate about is the specter of fully autonomous weapons. Many people in the artificial intelligence community believe that AI-enabled robots or drones with the capability to kill, without a human “in the loop” to authorize any lethal action, could eventually be as dangerous and destabilizing as biological or chemical weapons. In July 2018, over 160 AI companies and 2,400 individual researchers from across the globe—including a number of the people interviewed here—signed an open pledge promising to never develop such weapons. ( Several of the conversations in this book delve into the dangers presented by weaponized AI.

A much more futuristic and speculative danger is the so-called “AI alignment problem.” This is the concern that a truly intelligent, or perhaps superintelligent, machine might escape our control, or make decisions that might have adverse consequences for humanity. This is the fear that elicits seemingly over-the-top statements from people like Elon Musk. Nearly everyone I spoke to weighed in on this issue. To ensure that I gave this concern adequate and balanced coverage, I spoke with Nick Bostrom of the Future of Humanity Institute at the University of Oxford. Bostrom is the author of the bestselling book Superintelligence: Paths, Dangers, Strategies, which makes a careful argument regarding the potential risks associated with machines that might be far smarter than any human being.

The conversations included here were conducted from February to August 2018 and virtually all of them occupied at least an hour, some substantially more. They were recorded, professionally transcribed, and then edited for clarity by the team at Packt. Finally, the edited text was provided to the person I spoke to, who then had the opportunity to revise it and expand it. Therefore, I have every confidence that the words recorded here accurately reflect the thoughts of the person I interviewed.

The AI experts I spoke to are highly varied in terms of their origins, locations, and affiliations. One thing that even a brief perusal of this book will make apparent is the outsized influence of Google in the AI community. Of the 23 people I interviewed, seven have current or former affiliations with Google or its parent, Alphabet. Other major concentrations of talent are found at MIT and Stanford. Geoff Hinton and Yoshua Bengio are based at the Universities of Toronto and Montreal respectively, and the Canadian government has leveraged the reputations of their research organizations into a strategic focus on deep learning. Nineteen of the 23 people I spoke to work in the United States. Of those 19, however, more than half were born outside the US. Countries of origin include Australia, China, Egypt, France, Israel, Rhodesia (now Zimbabwe), Romania, and the UK. I would say this is pretty dramatic evidence of the critical role that skilled immigration plays in the technological leadership of the US.

As I carried out the conversations in this book, I had in mind a variety of potential readers, ranging from professional computer scientists, to managers and investors, to virtually anyone with an interest in AI and its impact on society. One especially important audience, however, consists of young people who might consider a future career in artificial intelligence. There is currently a massive shortage of talent in the field, especially among those with skills in deep learning, and a career in AI or machine learning promises to be exciting, lucrative and consequential.

As the industry works to attract more talent into the field, there is widespread recognition that much more must be done to ensure that those new people are more diverse. If artificial intelligence is indeed poised to reshape our world, then it is crucial that the individuals who best understand the technology—and are therefore best positioned to influence its direction—be representative of society as a whole.

About a quarter of those interviewed in this book are women, and that number is likely significantly higher than what would be found across the entire field of AI or machine learning. A recent study found that women represent about 12 percent of leading researchers in machine learning. ( A number of the people I spoke to emphasized the need for greater representation for both women and members of minority groups.

As you will learn from her interview in this book, one of the foremost women working in artificial intelligence is especially passionate about the need to increase diversity in the field. Stanford University’s Fei-Fei Li co-founded an organization now called AI4ALL ( to provide AI-focused summer camps geared especially to underrepresented high school students. AI4ALL has received significant industry support, including a recent grant from Google, and has now scaled up to include summer programs at six universities across the United States. While much work remains to be done, there are good reasons to be optimistic that diversity among AI researchers will increase significantly in the coming years and decades.

While this book does not assume a technical background, you will encounter some of the concepts and terminology associated with the field. For those without previous exposure to AI, I believe this will afford an opportunity to learn about the technology directly from some of the foremost minds in the field. To help less experienced readers get started, a brief overview of the vocabulary of AI follows this introduction, and I recommend you take a few moments to read this material before beginning the interviews. Additionally, the interview with Stuart Russell, who is the co-author of the leading AI textbook, includes an explanation of many of the field’s most important ideas.

It has been an extraordinary privilege for me to participate in the conversations in this book. I believe you will find everyone I spoke with to be thoughtful, articulate, and deeply committed to ensuring that the technology he or she is working to create will be leveraged for the benefit of humanity. What you will not so often find is broad-based consensus. This book is full of varied, and often sharply conflicting, insights, opinions, and predictions. The message should be clear: Artificial intelligence is a wide open field. The nature of the innovations that lie ahead, the rate at which they will occur, and the specific applications to which they will be applied are all shrouded in deep uncertainty. It is this combination of massive potential disruption together with fundamental uncertainty that makes it imperative that we begin to engage in a meaningful and inclusive conversation about the future of artificial intelligence and what it may mean for our way of life. I hope this book will make a contribution to that discussion.