Book Image

Blockchain Developer's Guide

By : Brenn Hill, Samanyu Chopra, Paul Valencourt, Narayan Prusty
Book Image

Blockchain Developer's Guide

By: Brenn Hill, Samanyu Chopra, Paul Valencourt, Narayan Prusty

Overview of this book

Blockchain applications provide a single-shared ledger to eliminate trust issues involving multiple stakeholders. It is the main technical innovation of Bitcoin, where it serves as the public ledger for Bitcoin transactions. Blockchain Developer's Guide takes you through the electrifying world of blockchain technology. It begins with the basic design of a blockchain and elaborates concepts, such as Initial Coin Offerings (ICOs), tokens, smart contracts, and other related terminologies. You will then explore the components of Ethereum, such as Ether tokens, transactions, and smart contracts that you need to build simple DApps. Blockchain Developer's Guide also explains why you must specifically use Solidity for Ethereum-based projects and lets you explore different blockchains with easy-to-follow examples. You will learn a wide range of concepts - beginning with cryptography in cryptocurrencies and including ether security, mining, and smart contracts. You will learn how to use web sockets and various API services for Ethereum. By the end of this Learning Path, you will be able to build efficient decentralized applications. This Learning Path includes content from the following Packt products: • Blockchain Quick Reference by Brenn Hill, Samanyu Chopra, Paul Valencourt • Building Blockchain Projects by Narayan Prusty
Table of Contents (37 chapters)
Title Page
About Packt


Now you should understand the basic components of a blockchain. Blocks are groups of transactions grouped together and act as the fundamental unit of a blockchain. Miners are computers that create new blocks on PoW blockchains. Validators, also called witnesses and other names, are computers that create blocks on PoS blockchains. Digital signatures are composed of public and private keys and use mathematics to prove the author of the data.

The key idea of hashing is to use a mathematical function that maps arbitrary data to a single, simple to deal with value. Any change to the data will make the end value very different

  • It's essentially impossible to construct the original data from the hash, but it's easy to create the hash from the original data
  • You can use these properties to prove that data has not been changed

In the next chapter, we will learn what these systems are and how blockchain counts as both. We will learn how to differentiate between the two systems and why these concepts...