Book Image

Applied Supervised Learning with Python

By : Benjamin Johnston, Ishita Mathur
Book Image

Applied Supervised Learning with Python

By: Benjamin Johnston, Ishita Mathur

Overview of this book

Machine learning—the ability of a machine to give right answers based on input data—has revolutionized the way we do business. Applied Supervised Learning with Python provides a rich understanding of how you can apply machine learning techniques in your data science projects using Python. You'll explore Jupyter Notebooks, the technology used commonly in academic and commercial circles with in-line code running support. With the help of fun examples, you'll gain experience working on the Python machine learning toolkit—from performing basic data cleaning and processing to working with a range of regression and classification algorithms. Once you’ve grasped the basics, you'll learn how to build and train your own models using advanced techniques such as decision trees, ensemble modeling, validation, and error metrics. You'll also learn data visualization techniques using powerful Python libraries such as Matplotlib and Seaborn. This book also covers ensemble modeling and random forest classifiers along with other methods for combining results from multiple models, and concludes by delving into cross-validation to test your algorithm and check how well the model works on unseen data. By the end of this book, you'll be equipped to not only work with machine learning algorithms, but also be able to create some of your own!
Table of Contents (9 chapters)

Summary


In this chapter, we started off with a discussion on overfitting and underfitting and how these can affect the performance of a model on unseen data. The chapter looked at ensemble modeling as a solution for these and went on to discuss different ensemble methods that could be used, and how they could decrease the overall bias or variance encountered when making predictions.

We first discussed bagging algorithms and introduced the concept of bootstrapping. Then, we looked at Random Forest as a classic example of a Bagged ensemble and solved exercises that involved building a bagging classifier and Random Forest classifier on the previously seen Titanic dataset.

We then moved on to discussing boosting algorithms, how they successfully reduce bias in the system, and gained an understanding of how to implement adaptive boosting and gradient boosting. The last ensemble method we discussed was stacking, which, as we saw from the exercise, gave us the best accuracy score of all the ensemble...