Book Image

Network Science with Python and NetworkX Quick Start Guide

By : Edward L. Platt
Book Image

Network Science with Python and NetworkX Quick Start Guide

By: Edward L. Platt

Overview of this book

NetworkX is a leading free and open source package used for network science with the Python programming language. NetworkX can track properties of individuals and relationships, find communities, analyze resilience, detect key network locations, and perform a wide range of important tasks. With the recent release of version 2, NetworkX has been updated to be more powerful and easy to use. If you’re a data scientist, engineer, or computational social scientist, this book will guide you in using the Python programming language to gain insights into real-world networks. Starting with the fundamentals, you’ll be introduced to the core concepts of network science, along with examples that use real-world data and Python code. This book will introduce you to theoretical concepts such as scale-free and small-world networks, centrality measures, and agent-based modeling. You’ll also be able to look for scale-free networks in real data and visualize a network using circular, directed, and shell layouts. By the end of this book, you’ll be able to choose appropriate network representations, use NetworkX to build and characterize networks, and uncover insights while working with real-world systems.
Table of Contents (15 chapters)

Working with Networks in NetworkX

The basic features of NetworkX are contained in several Python classes that represent different types of networks. In particular, this chapter discusses Graph, DiGraph, MultiGraph, and MultiDiGraph. These classes can be used to represent, analyze, and visualize most networks. In this chapter, you will learn to use these classes to work with real-world network data in NetworkX. The code examples in this and future chapters will assume that you have already imported the networkx package.

In this chapter, we will cover the following topics:

  • The Graph class: Understand the properties of undirected networks and how they are represented using the NetworkX Graph class.
  • Attributes: How to associate data with nodes and edges.
  • Edge weights: Learn how to quantify connection strength, and annotate edges with that information.
  • The DiGraph class: Understand...