Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Learn TensorFlow Enterprise
  • Table Of Contents Toc
Learn TensorFlow Enterprise

Learn TensorFlow Enterprise

By : Tung
5 (7)
close
close
Learn TensorFlow Enterprise

Learn TensorFlow Enterprise

5 (7)
By: Tung

Overview of this book

TensorFlow as a machine learning (ML) library has matured into a production-ready ecosystem. This beginner’s book uses practical examples to enable you to build and deploy TensorFlow models using optimal settings that ensure long-term support without having to worry about library deprecation or being left behind when it comes to bug fixes or workarounds. The book begins by showing you how to refine your TensorFlow project and set it up for enterprise-level deployment. You’ll then learn how to choose a future-proof version of TensorFlow. As you advance, you’ll find out how to build and deploy models in a robust and stable environment by following recommended practices made available in TensorFlow Enterprise. This book also teaches you how to manage your services better and enhance the performance and reliability of your artificial intelligence (AI) applications. You’ll discover how to use various enterprise-ready services to accelerate your ML and AI workflows on Google Cloud Platform (GCP). Finally, you’ll scale your ML models and handle heavy workloads across CPUs, GPUs, and Cloud TPUs. By the end of this TensorFlow book, you’ll have learned the patterns needed for TensorFlow Enterprise model development, data pipelines, training, and deployment.
Table of Contents (15 chapters)
close
close
1
Section 1 – TensorFlow Enterprise Services and Features
4
Section 2 – Data Preprocessing and Modeling
7
Section 3 – Scaling and Tuning ML Works
10
Section 4 – Model Optimization and Deployment
chevron up

Section 4 – Model Optimization and Deployment

This part introduces ways to improve the efficiency and speed of a model and its pipeline. We will start with the concept of model runtime, and then model optimization, followed by using TensorFlow Serving to serve models as a Docker container via a RESTful API.

This section comprises the following chapters:

  • Chapter 7, Model Optimization
  • Chapter 8, Best Practices for Model Training and Performance
  • Chapter 9, Serving a TensorFlow Model
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Learn TensorFlow Enterprise
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon