Book Image

Learn TensorFlow Enterprise

By : KC Tung
Book Image

Learn TensorFlow Enterprise

By: KC Tung

Overview of this book

TensorFlow as a machine learning (ML) library has matured into a production-ready ecosystem. This beginner’s book uses practical examples to enable you to build and deploy TensorFlow models using optimal settings that ensure long-term support without having to worry about library deprecation or being left behind when it comes to bug fixes or workarounds. The book begins by showing you how to refine your TensorFlow project and set it up for enterprise-level deployment. You’ll then learn how to choose a future-proof version of TensorFlow. As you advance, you’ll find out how to build and deploy models in a robust and stable environment by following recommended practices made available in TensorFlow Enterprise. This book also teaches you how to manage your services better and enhance the performance and reliability of your artificial intelligence (AI) applications. You’ll discover how to use various enterprise-ready services to accelerate your ML and AI workflows on Google Cloud Platform (GCP). Finally, you’ll scale your ML models and handle heavy workloads across CPUs, GPUs, and Cloud TPUs. By the end of this TensorFlow book, you’ll have learned the patterns needed for TensorFlow Enterprise model development, data pipelines, training, and deployment.
Table of Contents (15 chapters)
1
Section 1 – TensorFlow Enterprise Services and Features
4
Section 2 – Data Preprocessing and Modeling
7
Section 3 – Scaling and Tuning ML Works
10
Section 4 – Model Optimization and Deployment

Using TensorFlow Hub

Of these three approaches (TensorFlow Hub, the Estimators API, and the Keras API), TensorFlow Hub stands out from the other two. It is a library for open source machine learning models. The main purpose of TensorFlow Hub is to enable model reusability through transfer learning. Transfer learning is a very practical and convenient technique in deep learning modeling development. The hypothesis is that as a well-designed model (peer reviewed and made famous by publications) learned patterns in features during the training process, the model learned to generalize these patterns, and such generalization can be applied to new data. Therefore, we do not need to retrain the model again when we have new training data.

Let's take human vision as an example. The content of what we see can be decomposed from simple to sophisticated patterns in the order of lines, edges, shapes, layers, and finally a pattern. As it turns out, this is how a computer vision model recognizes...