Book Image

Learn TensorFlow Enterprise

By : KC Tung
Book Image

Learn TensorFlow Enterprise

By: KC Tung

Overview of this book

TensorFlow as a machine learning (ML) library has matured into a production-ready ecosystem. This beginner’s book uses practical examples to enable you to build and deploy TensorFlow models using optimal settings that ensure long-term support without having to worry about library deprecation or being left behind when it comes to bug fixes or workarounds. The book begins by showing you how to refine your TensorFlow project and set it up for enterprise-level deployment. You’ll then learn how to choose a future-proof version of TensorFlow. As you advance, you’ll find out how to build and deploy models in a robust and stable environment by following recommended practices made available in TensorFlow Enterprise. This book also teaches you how to manage your services better and enhance the performance and reliability of your artificial intelligence (AI) applications. You’ll discover how to use various enterprise-ready services to accelerate your ML and AI workflows on Google Cloud Platform (GCP). Finally, you’ll scale your ML models and handle heavy workloads across CPUs, GPUs, and Cloud TPUs. By the end of this TensorFlow book, you’ll have learned the patterns needed for TensorFlow Enterprise model development, data pipelines, training, and deployment.
Table of Contents (15 chapters)
1
Section 1 – TensorFlow Enterprise Services and Features
4
Section 2 – Data Preprocessing and Modeling
7
Section 3 – Scaling and Tuning ML Works
10
Section 4 – Model Optimization and Deployment

Converting a full model to an integer quantization model

This strategy requires TensorFlow 2.3. This quantization strategy is suitable for an environment where compute resources are really constrained, or where the compute node only operates in integer mode, such as edge devices or TPUs. As a result, all parameters are changed to int8 representation. This quantization strategy will try to use int8 representation for all ops or operations as the goal. When this is not possible, the ops are left as the original precision (in other words, float32).

This quantization strategy requires some representative data. This data represents the type of data that the model typically expects in terms of a range of values. In other words, we need to provide either some training or validation data to the integer quantization process. This may be the data already used, such as a subset of the training or validation data. Usually, around 100 samples are recommended. We are going to use 80 samples...