Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Machine Learning with the Elastic Stack
  • Table Of Contents Toc
Machine Learning with the Elastic Stack

Machine Learning with the Elastic Stack - Second Edition

By : Rich Collier, Camilla Montonen, Bahaaldine Azarmi
5 (8)
close
close
Machine Learning with the Elastic Stack

Machine Learning with the Elastic Stack

5 (8)
By: Rich Collier, Camilla Montonen, Bahaaldine Azarmi

Overview of this book

Elastic Stack, previously known as the ELK stack, is a log analysis solution that helps users ingest, process, and analyze search data effectively. With the addition of machine learning, a key commercial feature, the Elastic Stack makes this process even more efficient. This updated second edition of Machine Learning with the Elastic Stack provides a comprehensive overview of Elastic Stack's machine learning features for both time series data analysis as well as for classification, regression, and outlier detection. The book starts by explaining machine learning concepts in an intuitive way. You'll then perform time series analysis on different types of data, such as log files, network flows, application metrics, and financial data. As you progress through the chapters, you'll deploy machine learning within Elastic Stack for logging, security, and metrics. Finally, you'll discover how data frame analysis opens up a whole new set of use cases that machine learning can help you with. By the end of this Elastic Stack book, you'll have hands-on machine learning and Elastic Stack experience, along with the knowledge you need to incorporate machine learning in your distributed search and data analysis platform.
Table of Contents (19 chapters)
close
close
1
Section 1 – Getting Started with Machine Learning with Elastic Stack
4
Section 2 – Time Series Analysis – Anomaly Detection and Forecasting
11
Section 3 – Data Frame Analysis

Chapter 4: Forecasting

Forecasting is a natural extension of the time series modeling of Elastic ML. Since very expressive models are built behind the scenes and describe how data has behaved historically, it is therefore possible to project that information forward in time and predict how something should behave at a future time.

We will spend time learning the concepts behind forecasting, as well as stepping through some practical examples.

Specifically, this chapter will cover the following topics:

  • Contrasting forecasting with prophesying
  • Forecasting use cases
  • Forecasting theory of operation
  • Single time series forecasting
  • Looking at forecasting results
  • Multiple time series forecasting
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Machine Learning with the Elastic Stack
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon