Book Image

Modern Data Architectures with Python

By : Brian Lipp
3 (1)
Book Image

Modern Data Architectures with Python

3 (1)
By: Brian Lipp

Overview of this book

Modern Data Architectures with Python will teach you how to seamlessly incorporate your machine learning and data science work streams into your open data platforms. You’ll learn how to take your data and create open lakehouses that work with any technology using tried-and-true techniques, including the medallion architecture and Delta Lake. Starting with the fundamentals, this book will help you build pipelines on Databricks, an open data platform, using SQL and Python. You’ll gain an understanding of notebooks and applications written in Python using standard software engineering tools such as git, pre-commit, Jenkins, and Github. Next, you’ll delve into streaming and batch-based data processing using Apache Spark and Confluent Kafka. As you advance, you’ll learn how to deploy your resources using infrastructure as code and how to automate your workflows and code development. Since any data platform's ability to handle and work with AI and ML is a vital component, you’ll also explore the basics of ML and how to work with modern MLOps tooling. Finally, you’ll get hands-on experience with Apache Spark, one of the key data technologies in today’s market. By the end of this book, you’ll have amassed a wealth of practical and theoretical knowledge to build, manage, orchestrate, and architect your data ecosystems.
Table of Contents (19 chapters)
1
Part 1:Fundamental Data Knowledge
4
Part 2: Data Engineering Toolset
8
Part 3:Modernizing the Data Platform
13
Part 4:Hands-on Project

Dimensional modeling

A dimensional model is traditionally seen in OLAP techniques such as data warehouses and data lakes using Apache Spark. The goal of dimensional modeling is to reduce duplication and create a central source of truth. One reason for the reduction of data duplication is to save on storage costs, which isn’t as much of a factor in modern cloud storage. This data model consists of dimensions and facts. The dimension is the entity that we are trying to model in the real world, such as CUSTOMER, PRODUCT, DATE, or LOCATION, and the fact holds the numerical data such as REVENUE, PROFIT, SALES $ VALUE, and so on. The primary key of the dimensions flows to the fact table as a foreign key but more often than not, it is not hardcoded into the database. Rather, it is managed through the process that manages loading and maintaining data, such as Extract, Transform, and Load (ETL). This data model is business-user-friendly and is used for analytical reporting and analysis...