Book Image

Automated Machine Learning on AWS

By : Trenton Potgieter
Book Image

Automated Machine Learning on AWS

By: Trenton Potgieter

Overview of this book

AWS provides a wide range of solutions to help automate a machine learning workflow with just a few lines of code. With this practical book, you'll learn how to automate a machine learning pipeline using the various AWS services. Automated Machine Learning on AWS begins with a quick overview of what the machine learning pipeline/process looks like and highlights the typical challenges that you may face when building a pipeline. Throughout the book, you'll become well versed with various AWS solutions such as Amazon SageMaker Autopilot, AutoGluon, and AWS Step Functions to automate an end-to-end ML process with the help of hands-on examples. The book will show you how to build, monitor, and execute a CI/CD pipeline for the ML process and how the various CI/CD services within AWS can be applied to a use case with the Cloud Development Kit (CDK). You'll understand what a data-centric ML process is by working with the Amazon Managed Services for Apache Airflow and then build a managed Airflow environment. You'll also cover the key success criteria for an MLSDLC implementation and the process of creating a self-mutating CI/CD pipeline using AWS CDK from the perspective of the platform engineering team. By the end of this AWS book, you'll be able to effectively automate a complete machine learning pipeline and deploy it to production.
Table of Contents (18 chapters)
1
Section 1: Fundamentals of the Automated Machine Learning Process and AutoML on AWS
5
Section 2: Automating the Machine Learning Process with Continuous Integration and Continuous Delivery (CI/CD)
8
Section 3: Optimizing a Source Code-Centric Approach to Automated Machine Learning
11
Section 4: Optimizing a Data-Centric Approach to Automated Machine Learning
14
Section 5: Automating the End-to-End Production Application on AWS

Examining ML and data engineering roles

In previous chapters, we have used the term ML practitioner as a blanket term for any person responsible for automating the ML process. Within the context of the MLSDLC process, we typically see this role split into two distinct functions, namely the following:

  • Data scientist: The data scientist is primarily responsible for building, training, and tuning an ML model that meets the business requirements of the use case.
  • ML engineer: Among numerous responsibilities, the ML engineer is primarily responsible for designing the overall ML system to support the model, managing the appropriate datasets for model training, and ensuring the final ML application addresses the business requirements for the use case.

However, for the sake of the ACME application example, we will group these two functions under the banner of the ML team, with the following diagram highlighting how this team fits into the MLSDLC process:

...