Book Image

Optimizing Databricks Workloads

By : Anirudh Kala, Anshul Bhatnagar, Sarthak Sarbahi
Book Image

Optimizing Databricks Workloads

By: Anirudh Kala, Anshul Bhatnagar, Sarthak Sarbahi

Overview of this book

Databricks is an industry-leading, cloud-based platform for data analytics, data science, and data engineering supporting thousands of organizations across the world in their data journey. It is a fast, easy, and collaborative Apache Spark-based big data analytics platform for data science and data engineering in the cloud. In Optimizing Databricks Workloads, you will get started with a brief introduction to Azure Databricks and quickly begin to understand the important optimization techniques. The book covers how to select the optimal Spark cluster configuration for running big data processing and workloads in Databricks, some very useful optimization techniques for Spark DataFrames, best practices for optimizing Delta Lake, and techniques to optimize Spark jobs through Spark core. It contains an opportunity to learn about some of the real-world scenarios where optimizing workloads in Databricks has helped organizations increase performance and save costs across various domains. By the end of this book, you will be prepared with the necessary toolkit to speed up your Spark jobs and process your data more efficiently.
Table of Contents (13 chapters)
1
Section 1: Introduction to Azure Databricks
5
Section 2: Optimization Techniques
10
Section 3: Real-World Scenarios

Learning about broadcast joins

In ETL operations, we need to perform join operations between new data and lookup tables or historical tables. In such scenarios, a join operation is performed between a large DataFrame (millions of records) and a small DataFrame (hundreds of records). A standard join between a large and small DataFrame incurs a shuffle between the worker nodes of the cluster. This happens because all the matching data needs to be shuffled to every node of the cluster. While this process is computationally expensive, it also leads to performance bottlenecks due to network overheads on account of shuffling. Here, broadcast joins come to the rescue! With the help of broadcast joins, Spark duplicates the smaller DataFrame on every node of the cluster, thereby avoiding the cost of shuffling the large DataFrame.

We can better understand the difference between a standard join and a broadcast join with the help of the following diagram. In the case of a standard join, the...