Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Natural Language Understanding with Python
  • Table Of Contents Toc
Natural Language Understanding with Python

Natural Language Understanding with Python

By : Deborah A. Dahl
4.8 (12)
close
close
Natural Language Understanding with Python

Natural Language Understanding with Python

4.8 (12)
By: Deborah A. Dahl

Overview of this book

Natural Language Understanding facilitates the organization and structuring of language allowing computer systems to effectively process textual information for various practical applications. Natural Language Understanding with Python will help you explore practical techniques for harnessing NLU to create diverse applications. with step-by-step explanations of essential concepts and practical examples, you’ll begin by learning about NLU and its applications. You’ll then explore a wide range of current NLU techniques and their most appropriate use-case. In the process, you’ll be introduced to the most useful Python NLU libraries. Not only will you learn the basics of NLU, you’ll also discover practical issues such as acquiring data, evaluating systems, and deploying NLU applications along with their solutions. The book is a comprehensive guide that’ll help you explore techniques and resources that can be used for different applications in the future. By the end of this book, you’ll be well-versed with the concepts of natural language understanding, deep learning, and large language models (LLMs) for building various AI-based applications.
Table of Contents (21 chapters)
close
close
1
Part 1: Getting Started with Natural Language Understanding Technology
4
Part 2:Developing and Testing Natural Language Understanding Systems
16
Part 3: Systems in Action – Applying Natural Language Understanding at Scale

Identifying Practical Natural Language Understanding Problems

In this chapter, you will learn how to identify natural language understanding (NLU) problems that are a good fit for today’s technology. That means they will not be too difficult for the state-of-the-art NLU approaches but neither can they be addressed by simple, non-NLU approaches. Practical NLU problems also require sufficient training data. Without sufficient training data, the resulting NLU system will perform poorly. The benefits of an NLU system also must justify its development and maintenance costs. While many of these considerations are things that project managers should think about, they also apply to students who are looking for class projects or thesis topics.

Before starting a project that involves NLU, the first question to ask is whether the goals of the project are a good fit for the current state of the art in NLU. Is NLU the right technology for solving the problem that you wish to address?...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Natural Language Understanding with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon