Book Image

PostgreSQL 16 Administration Cookbook

By : Gianni Ciolli, Boriss Mejías, Jimmy Angelakos, Vibhor Kumar, Simon Riggs
5 (1)
Book Image

PostgreSQL 16 Administration Cookbook

5 (1)
By: Gianni Ciolli, Boriss Mejías, Jimmy Angelakos, Vibhor Kumar, Simon Riggs

Overview of this book

PostgreSQL has seen a huge increase in its customer base in the past few years and is becoming one of the go-to solutions for anyone who has a database-specific challenge. This PostgreSQL book touches on all the fundamentals of Database Administration in a problem-solution format. It is intended to be the perfect desk reference guide. This new edition focuses on recipes based on the new PostgreSQL 16 release. The additions include handling complex batch loading scenarios with the SQL MERGE statement, security improvements, running Postgres on Kubernetes or with TPA and Ansible, and more. This edition also focuses on certain performance gains, such as query optimization, and the acceleration of specific operations, such as sort. It will help you understand roles, ensuring high availability, concurrency, and replication. It also draws your attention to aspects like validating backups, recovery, monitoring, and scaling aspects. This book will act as a one-stop solution to all your real-world database administration challenges. By the end of this book, you will be able to manage, monitor, and replicate your PostgreSQL 16 database for efficient administration and maintenance with the best practices from experts.
Table of Contents (15 chapters)
13
Other Books You May Enjoy
14
Index

Avoiding auto-freezing

In the life cycle of a row, there are two routes that a row can take in PostgreSQL – a row version dies and needs to be removed by VACUUM, or a row version gets old enough and needs to be frozen, a task that is also performed by the VACUUM process. The removal of dead rows is easy to understand, while the second seems strange and surprising because many PostgreSQL users will not be familiar with the concept of freezing. Freezing is necessary for the proper operation of PostgreSQL’s Multiversion Concurrency Control (MVCC) for the following reason.

PostgreSQL uses internal transaction identifiers that are 4 bytes long, so we only have 232 transaction IDs (about 4 billion). PostgreSQL starts again from the beginning when that wraps around, circularly allocating new identifiers. The reason we do this is that moving to an 8-byte identifier has various other negative effects and costs that we would rather not pay for, so we keep the 4-byte transaction...