Book Image

What's New in TensorFlow 2.0

By : Ajay Baranwal, Alizishaan Khatri, Tanish Baranwal
Book Image

What's New in TensorFlow 2.0

By: Ajay Baranwal, Alizishaan Khatri, Tanish Baranwal

Overview of this book

TensorFlow is an end-to-end machine learning platform for experts as well as beginners, and its new version, TensorFlow 2.0 (TF 2.0), improves its simplicity and ease of use. This book will help you understand and utilize the latest TensorFlow features. What's New in TensorFlow 2.0 starts by focusing on advanced concepts such as the new TensorFlow Keras APIs, eager execution, and efficient distribution strategies that help you to run your machine learning models on multiple GPUs and TPUs. The book then takes you through the process of building data ingestion and training pipelines, and it provides recommendations and best practices for feeding data to models created using the new tf.keras API. You'll explore the process of building an inference pipeline using TF Serving and other multi-platform deployments before moving on to explore the newly released AIY, which is essentially do-it-yourself AI. This book delves into the core APIs to help you build unified convolutional and recurrent layers and use TensorBoard to visualize deep learning models using what-if analysis. By the end of the book, you'll have learned about compatibility between TF 2.0 and TF 1.x and be able to migrate to TF 2.0 smoothly.
Table of Contents (13 chapters)
Title Page

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

TensorFlow 2.0 Quick Start Guide
Tony Holdroyd

ISBN: 9781789530759

  • Use tf.Keras for fast prototyping, building, and training deep learning neural network models
  • Easily convert your TensorFlow 1.12 applications to TensorFlow 2.0-compatible files
  • Use TensorFlow to tackle traditional supervised and unsupervised machine learning applications
  • Understand image recognition techniques using TensorFlow
  • Perform neural style transfer for image hybridization using a neural network
  • Code a recurrent neural network in TensorFlow to perform text-style generation

Hands-On Computer Vision with TensorFlow 2
Benjamin Planche and Eliot Andres

ISBN: 9781788830645

  • Create your own neural networks from scratch
  • Classify images with modern architectures including Inception and ResNet
  • Detect and segment objects in images with YOLO, Mask R-CNN, and U-Net
  • Tackle problems faced when developing self-driving cars and facial emotion recognition systems
  • Boost your application’s performance with transfer learning, GANs, and domain adaptation
  • Use recurrent neural networks (RNNs) for video analysis
  • Optimize and deploy your networks on mobile devices and in the browser