Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Computer Vision with TensorFlow 2.x
  • Table Of Contents Toc
Mastering Computer Vision with TensorFlow 2.x

Mastering Computer Vision with TensorFlow 2.x

By : Kar
3.8 (4)
close
close
Mastering Computer Vision with TensorFlow 2.x

Mastering Computer Vision with TensorFlow 2.x

3.8 (4)
By: Kar

Overview of this book

Computer vision allows machines to gain human-level understanding to visualize, process, and analyze images and videos. This book focuses on using TensorFlow to help you learn advanced computer vision tasks such as image acquisition, processing, and analysis. You'll start with the key principles of computer vision and deep learning to build a solid foundation, before covering neural network architectures and understanding how they work rather than using them as a black box. Next, you'll explore architectures such as VGG, ResNet, Inception, R-CNN, SSD, YOLO, and MobileNet. As you advance, you'll learn to use visual search methods using transfer learning. You'll also cover advanced computer vision concepts such as semantic segmentation, image inpainting with GAN's, object tracking, video segmentation, and action recognition. Later, the book focuses on how machine learning and deep learning concepts can be used to perform tasks such as edge detection and face recognition. You'll then discover how to develop powerful neural network models on your PC and on various cloud platforms. Finally, you'll learn to perform model optimization methods to deploy models on edge devices for real-time inference. By the end of this book, you'll have a solid understanding of computer vision and be able to confidently develop models to automate tasks.
Table of Contents (18 chapters)
close
close
1
Section 1: Introduction to Computer Vision and Neural Networks
6
Section 2: Advanced Concepts of Computer Vision with TensorFlow
11
Section 3: Advanced Implementation of Computer Vision with TensorFlow
14
Section 4: TensorFlow Implementation at the Edge and on the Cloud

Summary

In this chapter, we learned how image filtering modifies the input image through a convolution operation to produce an output that detects a portion of a feature called an edge. This is fundamental to computer vision. As you will learn in the following chapters, subsequent application of image filtering will transform the edges to a higher-level pattern, such as features.

We also learned how to calculate an image histogram, perform image matching using SIFT, and use contour and the HOG detector to draw a bounding box. We learned how to use OpenCV's bounding box color and size method to segregate one class from another. The chapter concluded with an introduction to TensorFlow, which will provide a foundation for the remaining chapters of this book.

In the next chapter, we will learn about a different type of computer vision technique, called pattern recognition, and we will use it to classify the contents of an image with a pattern.

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Computer Vision with TensorFlow 2.x
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon