Book Image

Hands-On Simulation Modeling with Python

By : Giuseppe Ciaburro
Book Image

Hands-On Simulation Modeling with Python

By: Giuseppe Ciaburro

Overview of this book

Simulation modeling helps you to create digital prototypes of physical models to analyze how they work and predict their performance in the real world. With this comprehensive guide, you'll understand various computational statistical simulations using Python. Starting with the fundamentals of simulation modeling, you'll understand concepts such as randomness and explore data generating processes, resampling methods, and bootstrapping techniques. You'll then cover key algorithms such as Monte Carlo simulations and Markov decision processes, which are used to develop numerical simulation models, and discover how they can be used to solve real-world problems. As you advance, you'll develop simulation models to help you get accurate results and enhance decision-making processes. Using optimization techniques, you'll learn to modify the performance of a model to improve results and make optimal use of resources. The book will guide you in creating a digital prototype using practical use cases for financial engineering, prototyping project management to improve planning, and simulating physical phenomena using neural networks. By the end of this book, you'll have learned how to construct and deploy simulation models of your own to overcome real-world challenges.
Table of Contents (16 chapters)
Section 1: Getting Started with Numerical Simulation
Section 2: Simulation Modeling Algorithms and Techniques
Section 3: Real-World Applications

Chapter 6: Resampling Methods

Resampling methods are one of the most interesting inferential applications of stochastic simulations and random numbers. They are particularly useful in the nonparametric field, where the traditional inference methods cannot be correctly applied. They generate random numbers to be assigned to random variables or random samples. They require machine time related to the growth of repeated operations. They are very simple to implement and once implemented, they are automatic. Selecting the required elements must provide a sample that is, or at least can be, representative of the population. To achieve this, all the characteristics of the population must be included in the sample. In this chapter, we will try to extrapolate the results obtained from the representative sample of the entire population. Given the possibility of making mistakes in this extrapolation, it will be necessary to evaluate the degree of accuracy of the sample and the risk of arriving...