Book Image

OpenGL 4 Shading Language Cookbook - Third Edition

By : David Wolff
Book Image

OpenGL 4 Shading Language Cookbook - Third Edition

By: David Wolff

Overview of this book

OpenGL 4 Shading Language Cookbook, Third Edition provides easy-to-follow recipes that first walk you through the theory and background behind each technique, and then proceed to showcase and explain the GLSL and OpenGL code needed to implement them. The book begins by familiarizing you with beginner-level topics such as compiling and linking shader programs, saving and loading shader binaries (including SPIR-V), and using an OpenGL function loader library. We then proceed to cover basic lighting and shading effects. After that, you'll learn to use textures, produce shadows, and use geometry and tessellation shaders. Topics such as particle systems, screen-space ambient occlusion, deferred rendering, depth-based tessellation, and physically based rendering will help you tackle advanced topics. OpenGL 4 Shading Language Cookbook, Third Edition also covers advanced topics such as shadow techniques (including the two of the most common techniques: shadow maps and shadow volumes). You will learn how to use noise in shaders and how to use compute shaders. The book provides examples of modern shading techniques that can be used as a starting point for programmers to expand upon to produce modern, interactive, 3D computer-graphics applications.
Table of Contents (17 chapters)
Title Page
Packt Upsell


In Chapter 1, Getting Started with GLSL, we covered the basics of compiling, linking, and exporting shader programs. In this chapter, we'll cover techniques for communication between shader programs and the host OpenGL program. To be more specific, we'll focus primarily on input. The input to shader programs is generally accomplished via attributes and uniform variables. In this chapter, we'll see several examples of the use of these types of variables. We'll also cover a recipe for mixing and matching shader program stages, and a recipe for creating a C++ shader program object.

We won't cover shader output in this chapter. Obviously, shader programs send their output to the default framebuffer, but there are several other techniques for receiving shader output. For example, the use of custom framebuffer objects allow us to store shader output to a texture or other buffer. A technique called transform feedback allows for the storage of vertex shader output into arbitrary buffers...