Book Image

OpenGL 4 Shading Language Cookbook - Third Edition

By : David Wolff
Book Image

OpenGL 4 Shading Language Cookbook - Third Edition

By: David Wolff

Overview of this book

OpenGL 4 Shading Language Cookbook, Third Edition provides easy-to-follow recipes that first walk you through the theory and background behind each technique, and then proceed to showcase and explain the GLSL and OpenGL code needed to implement them. The book begins by familiarizing you with beginner-level topics such as compiling and linking shader programs, saving and loading shader binaries (including SPIR-V), and using an OpenGL function loader library. We then proceed to cover basic lighting and shading effects. After that, you'll learn to use textures, produce shadows, and use geometry and tessellation shaders. Topics such as particle systems, screen-space ambient occlusion, deferred rendering, depth-based tessellation, and physically based rendering will help you tackle advanced topics. OpenGL 4 Shading Language Cookbook, Third Edition also covers advanced topics such as shadow techniques (including the two of the most common techniques: shadow maps and shadow volumes). You will learn how to use noise in shaders and how to use compute shaders. The book provides examples of modern shading techniques that can be used as a starting point for programmers to expand upon to produce modern, interactive, 3D computer-graphics applications.
Table of Contents (17 chapters)
Title Page
Packt Upsell
Contributors
Preface
Index

Creating a night-vision effect


Noise can be useful to simulate static or other kinds of electronic interference effects. This recipe is a fun example of that. We'll create the look of night-vision goggles with some noise thrown in to simulate some random static in the signal. Just for fun, we'll also outline the scene in the classic binocular view. The following image shows an example of this:

We'll apply the night-vision effect as a second pass to the rendered scene. The first pass will render the scene to a texture (see Chapter 5, Using Textures), and the second pass will apply the night-vision effect.

Getting ready

Create a framebuffer object (FBO) for the first pass. Attach a texture to the first color attachment of the FBO. For more information on how to do this, see ???Chapter 5, Using Textures.

Create and assign any uniform variables needed for the shading model. Set the following uniforms defined in the fragment shader:

  • Width: The width of the viewport in pixels
  • Height: The height of the...