Book Image

Effective Robotics Programming with ROS - Third Edition

By : Anil Mahtani, Luis Sánchez, Aaron Martinez, Enrique Fernandez Perdomo
Book Image

Effective Robotics Programming with ROS - Third Edition

By: Anil Mahtani, Luis Sánchez, Aaron Martinez, Enrique Fernandez Perdomo

Overview of this book

Building and programming a robot can be cumbersome and time-consuming, but not when you have the right collection of tools, libraries, and more importantly expert collaboration. ROS enables collaborative software development and offers an unmatched simulated environment that simplifies the entire robot building process. This book is packed with hands-on examples that will help you program your robot and give you complete solutions using open source ROS libraries and tools. It also shows you how to use virtual machines and Docker containers to simplify the installation of Ubuntu and the ROS framework, so you can start working in an isolated and control environment without changing your regular computer setup. It starts with the installation and basic concepts, then continues with more complex modules available in ROS such as sensors and actuators integration (drivers), navigation and mapping (so you can create an autonomous mobile robot), manipulation, Computer Vision, perception in 3D with PCL, and more. By the end of the book, you’ll be able to leverage all the ROS Kinetic features to build a fully fledged robot for all your needs.
Table of Contents (18 chapters)
Effective Robotics Programming with ROS Third Edition
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
Index

The navigation stack in ROS


In order to understand the navigation stack, you should think of it as a set of algorithms that use the sensors of the robot and the odometry so that you can control the robot using a standard message. It can move your robot without any problems, such as crashing, getting stuck in a location, or getting lost to another position.

You would assume that this stack can be easily used with any robot. This is almost true, but it is necessary to tune some configuration files and write some nodes to use the stack.

The robot must satisfy some requirements before it uses the navigation stack:

  • The navigation stack can only handle a differential drive and holonomic-wheeled robots. The shape requisites of the robot must either be a square or a rectangle. However, it can also do certain things with biped robots, such as robot localization, as long as the robot does not move sideways.

  • It requires that the robot publishes information about the relationships between the positions...