Book Image

Effective Robotics Programming with ROS - Third Edition

By : Anil Mahtani, Luis Sánchez, Aaron Martinez, Enrique Fernandez Perdomo
Book Image

Effective Robotics Programming with ROS - Third Edition

By: Anil Mahtani, Luis Sánchez, Aaron Martinez, Enrique Fernandez Perdomo

Overview of this book

Building and programming a robot can be cumbersome and time-consuming, but not when you have the right collection of tools, libraries, and more importantly expert collaboration. ROS enables collaborative software development and offers an unmatched simulated environment that simplifies the entire robot building process. This book is packed with hands-on examples that will help you program your robot and give you complete solutions using open source ROS libraries and tools. It also shows you how to use virtual machines and Docker containers to simplify the installation of Ubuntu and the ROS framework, so you can start working in an isolated and control environment without changing your regular computer setup. It starts with the installation and basic concepts, then continues with more complex modules available in ROS such as sensors and actuators integration (drivers), navigation and mapping (so you can create an autonomous mobile robot), manipulation, Computer Vision, perception in 3D with PCL, and more. By the end of the book, you’ll be able to leverage all the ROS Kinetic features to build a fully fledged robot for all your needs.
Table of Contents (18 chapters)
Effective Robotics Programming with ROS Third Edition
About the Authors
About the Reviewer
Customer Feedback


In this chapter, you worked on the steps required to configure your robot in order to use it with the navigation stack. Now you know that the robot must have a planar laser, must be a differential-wheeled robot, and it should satisfy some requirements for the base control and the geometry.

Keep in mind that we are working with Gazebo to demonstrate the examples and to explain how the navigation stack works with different configurations. It is more complex to explain all of this directly on a real, robotic platform because we do not know whether you have one or have access to one. In any case, depending on the platform, the instructions may vary and the hardware may fail, so it is safer and useful to run these algorithms in simulations; later, we can test them on a real robot, as long as it satisfies the requirements described thus far.

In the next chapter, you will learn how to configure the navigation stack, create the .launch files, and navigate autonomously in Gazebo with the robot...