Book Image

BeagleBone Robotic Projects

By : Richard Grimmett
Book Image

BeagleBone Robotic Projects

By: Richard Grimmett

Overview of this book

Thanks to new, inexpensive microcontrollers, robotics has become far more accessible than it was in the past. These microcontrollers provide a whole new set of capabilities to allow even the most inexperienced users to make amazingly complicated projects. Beaglebone is effectively a small, light, cheap computer in a similar vein to Raspberry Pi and Arduino. It has all of the extensibility of today's desktop machines, but without the bulk, expense, or noise. This project guide provides step-by-step instructions to allow anyone to use this new, low cost platform in some fascinating robotics projects. By the time you are finished, your projects will be able to see, speak, listen, detect their surroundings, and move in a variety of amazing ways. The book begins with unpacking and powering up the components.This will include guidance on what to purchase and how to connect it all successfully–and a primer on programming the BeagleBone Black. Chapter by chapter, we will add additional software functionality available from the open source community, including how to make the system see using a webcam, how to hear using a microphone, and how to speak using a speaker. We then add hardware to make your robots move–including wheeled and legged examples–as well as covering how to add sonar sensors to avoid or find objects, plus wireless control to make your robot truly autonomous. Adding GPS allows the robot to find itself. Finally the book covers how to integrate all of this functionality so that it can all work together, before developing the most impressive robotics projects: those that can sail, fly, and explore underwater.
Table of Contents (18 chapters)
BeagleBone Robotic Projects
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Connecting the BeagleBone Black to the mobile platform using a servo controller


Now that you have a legged platform and a servo motor controller, you are ready to make your project walk!

Prepare for lift off

Before you begin, you'll need some background on servo motors. Servo motors are somewhat similar to DC motors; however, there is an important difference. While DC motors are generally designed to move in a continuous way—rotating 360 degrees at a given speed—servos are generally designed to move within a limited set of angles. In other words, in the DC motor world, you generally want your motors to spin with continuous rotation speed that you control. In the servo world, you want your motor to move to a specific position that you control.

Engage thrusters

To make your project walk, you first need to connect the servo motor controller to the servos. There are two connections you need to make: the first to the servo motors, the second to the battery holder. In this section, you'll connect...