Book Image

Mastering Embedded Linux Programming - Third Edition

By : Frank Vasquez, Chris Simmonds
5 (3)
Book Image

Mastering Embedded Linux Programming - Third Edition

5 (3)
By: Frank Vasquez, Chris Simmonds

Overview of this book

If you’re looking for a book that will demystify embedded Linux, then you’ve come to the right place. Mastering Embedded Linux Programming is a fully comprehensive guide that can serve both as means to learn new things or as a handy reference. The first few chapters of this book will break down the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. After that, you will learn how to create each of these elements from scratch and automate the process using Buildroot and the Yocto Project. As you progress, the book will show you how to implement an effective storage strategy for flash memory chips and install updates to a device remotely once it’s deployed. You’ll also learn about the key aspects of writing code for embedded Linux, such as how to access hardware from apps, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters demonstrate how to debug your code, whether it resides in apps or in the Linux kernel itself. You’ll also cover the different tracers and profilers that are available for Linux so that you can quickly pinpoint any performance bottlenecks in your system. By the end of this Linux book, you’ll be able to create efficient and secure embedded devices using Linux.
Table of Contents (27 chapters)
1
Section 1: Elements of Embedded Linux
10
Section 2: System Architecture and Design Decisions
18
Section 3: Writing Embedded Applications
22
Section 4: Debugging and Optimizing Performance

Scheduling

The second big topic I want to cover in this chapter is scheduling. The Linux scheduler has a queue of threads that are ready to run, and its job is to schedule them on CPUs as they become available. Each thread has a scheduling policy that may be time-shared or real-time. The time-shared threads have a niceness value that increases or reduces their entitlement to CPU time. The real-time threads have priority in that a higher priority thread will preempt a lower one. The scheduler works with threads, not processes. Each thread is scheduled regardless of which process it is running in.

The scheduler runs when any of the following occurs:

  • A thread is blocked by calling sleep() or another blocking system call
  • A time-shared thread exhausts its time slice
  • An interruption causes a thread to be unblocked, for example, because of
    I/O completing

For background information on the Linux scheduler, I recommend that you read the chapter on process scheduling...