Book Image

Mastering Embedded Linux Programming - Third Edition

By : Frank Vasquez, Chris Simmonds
5 (3)
Book Image

Mastering Embedded Linux Programming - Third Edition

5 (3)
By: Frank Vasquez, Chris Simmonds

Overview of this book

If you’re looking for a book that will demystify embedded Linux, then you’ve come to the right place. Mastering Embedded Linux Programming is a fully comprehensive guide that can serve both as means to learn new things or as a handy reference. The first few chapters of this book will break down the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. After that, you will learn how to create each of these elements from scratch and automate the process using Buildroot and the Yocto Project. As you progress, the book will show you how to implement an effective storage strategy for flash memory chips and install updates to a device remotely once it’s deployed. You’ll also learn about the key aspects of writing code for embedded Linux, such as how to access hardware from apps, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters demonstrate how to debug your code, whether it resides in apps or in the Linux kernel itself. You’ll also cover the different tracers and profilers that are available for Linux so that you can quickly pinpoint any performance bottlenecks in your system. By the end of this Linux book, you’ll be able to create efficient and secure embedded devices using Linux.
Table of Contents (27 chapters)
1
Section 1: Elements of Embedded Linux
10
Section 2: System Architecture and Design Decisions
18
Section 3: Writing Embedded Applications
22
Section 4: Debugging and Optimizing Performance

Comparing build systems

I described the process of creating a system manually in Chapter 5, Building a Root Filesystem, as the Roll Your Own (RYO) process. It has the advantage that you are in complete control of the software, and you can tailor it to do anything you like. If you want it to do something truly odd but innovative, or if you want to reduce the memory footprint to the smallest size possible, RYO is the way to go. But, in the vast majority of situations, building manually is a waste of time and produces inferior, unmaintainable systems.

The idea of a build system is to automate all the steps I have described up to this point.
A build system should be able to build, from upstream source code, some or all of
the following:

  • A toolchain
  • A bootloader
  • A kernel
  • A root filesystem

Building from upstream source code is important for a number of reasons. It means that you have the peace of mind that you can rebuild at any time, without external dependencies...