Book Image

Robotics at Home with Raspberry Pi Pico

By : Danny Staple
Book Image

Robotics at Home with Raspberry Pi Pico

By: Danny Staple

Overview of this book

The field of robotics is expanding, and this is the perfect time to learn how to create robots at home for different purposes. This book will help you take your first steps in planning, building, and programming a robot with Raspberry Pi Pico, an impressive controller bursting with I/O capabilities. After a quick tour of Pico, you’ll begin designing a robot chassis in 3D CAD. With easy-to-follow instructions, shopping lists, and plans, you’ll start building the robot. Further, you’ll add simple sensors and outputs to extend the robot, reinforce your design skills, and build your knowledge in programming with CircuitPython. You’ll also learn about interactions with electronics, standard robotics algorithms, and the discipline and process for building robots. Moving forward, you’ll learn how to add more complicated sensors and robotic behaviors, with increasing complexity levels, giving you hands-on experience. You’ll learn about Raspberry Pi Pico’s excellent features, such as PIO, adding capabilities such as avoiding walls, detecting movement, and compass headings. You’ll combine these with Bluetooth BLE for seeing sensor data and remotely controlling your robot with a smartphone. Finally, you’ll program the robot to find its location in an arena. By the end of this book, you’ll have built a robot at home, and be well equipped to build more with different levels of complexity.
Table of Contents (20 chapters)
1
Part 1: The Basics – Preparing for Robotics with Raspberry Pi Pico
7
Part 2: Interfacing Raspberry Pi Pico with Simple Sensors and Outputs
12
Part 3: Adding More Robotic Behaviors to Raspberry Pi Pico

Exercises

These exercises will deepen your understanding of the topics that were covered in this chapter and make the robot code better:

  • Combining the preceding behaviors with the menu system for the UART we’ve seen in previous chapters would allow you to tune the PID with the robot running.
  • Could you use the known turn behavior and straight-line behavior to write a better version of the planned path program from Chapter 5, Driving Motors with Raspberry Pi Pico?
  • Experiment with the Euler heading reading – after calibrating, see how the readings change when you bring the robot near objects such as a laptop or kitchen appliances. This experiment will demonstrate a weakness with this kind of sensor.
  • An advanced experiment would be to extract the quaternion (instead of Euler data) and write this to the UART.