Book Image

Developing IoT Projects with ESP32

By : Vedat Ozan Oner
Book Image

Developing IoT Projects with ESP32

By: Vedat Ozan Oner

Overview of this book

Developing IoT Projects with ESP32 provides end-to-end coverage of secure data communication techniques from sensors to cloud platforms that will help you to develop production-grade IoT solutions by using the ESP32 SoC. You'll learn how to employ ESP32 in your IoT projects by interfacing with different sensors and actuators using different types of serial protocols. This book will show you how some projects require immediate output for end-users, and cover different display technologies as well as examples of driving different types of displays. The book features a dedicated chapter on cybersecurity packed with hands-on examples. As you progress, you'll get to grips with BLE technologies and BLE mesh networking and work on a complete smart home project where all nodes communicate over a BLE mesh. Later chapters will show you how IoT requires cloud connectivity most of the time and remote access to smart devices. You'll also see how cloud platforms and third-party integrations enable endless possibilities for your end-users, such as insights with big data analytics and predictive maintenance to minimize costs. By the end of this book, you'll have developed the skills you need to start using ESP32 in your next wireless IoT project and meet the project's requirements by building effective, efficient, and secure solutions.
Table of Contents (18 chapters)
1
Section 1: Using ESP32
7
Section 2: Local Network Communication
12
Section 3: Cloud Communication

Working with actuators

An IoT device acts on the physical world by using actuators, hence the name. The device generates an output as decided by the internal states of the application, which can be a reading from a sensor or a scheduled operation. The trigger for an action can also be an external command received from an external entity such as another device in the network, or perhaps its human user with a mobile application. Let's start with relays.

Using an electromechanical relay to control switching

An electromechanical relay (EMR) is an electronic device that switches its output on and off according to its input control signal. The input signal level is low voltage, so it 
can be driven by using a microcontroller unit or a system on a chip (SoC), such as ESP32. The output of an EMR is electrically isolated from its input and switches' high-voltage/high-current load connected to it. The power source of the load can be alternating current (AC) and/or DC....