Book Image

Mastering Embedded Linux Programming - Third Edition

By : Frank Vasquez, Chris Simmonds
5 (3)
Book Image

Mastering Embedded Linux Programming - Third Edition

5 (3)
By: Frank Vasquez, Chris Simmonds

Overview of this book

If you’re looking for a book that will demystify embedded Linux, then you’ve come to the right place. Mastering Embedded Linux Programming is a fully comprehensive guide that can serve both as means to learn new things or as a handy reference. The first few chapters of this book will break down the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. After that, you will learn how to create each of these elements from scratch and automate the process using Buildroot and the Yocto Project. As you progress, the book will show you how to implement an effective storage strategy for flash memory chips and install updates to a device remotely once it’s deployed. You’ll also learn about the key aspects of writing code for embedded Linux, such as how to access hardware from apps, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters demonstrate how to debug your code, whether it resides in apps or in the Linux kernel itself. You’ll also cover the different tracers and profilers that are available for Linux so that you can quickly pinpoint any performance bottlenecks in your system. By the end of this Linux book, you’ll be able to create efficient and secure embedded devices using Linux.
Table of Contents (27 chapters)
1
Section 1: Elements of Embedded Linux
10
Section 2: System Architecture and Design Decisions
18
Section 3: Writing Embedded Applications
22
Section 4: Debugging and Optimizing Performance

Processes

A process holds the environment in which threads can run: it holds the memory mappings, the file descriptors, the user and group IDs, and more. The first process is the init process, which is created by the kernel during boot and has a PID of one. Thereafter, processes are created by duplication in an operation known as forking.

Creating a new process

The POSIX function to create a process is fork(2). It is an odd function because, for each successful call, there are two returns: one in the process that made the call, known as the Parent, and one in the newly created process, known as the Child, as shown in the following diagram:

Figure 17.3 – Forking

Figure 17.3 – Forking

Immediately after the call, the child is an exact copy of the parent: it has the same stack, the same heap, the same file descriptors, and it executes the same line of code – the one following fork. The only way the programmer can tell them apart is by looking at the return value...