Book Image

Mastering Embedded Linux Programming - Third Edition

By : Frank Vasquez, Chris Simmonds
5 (3)
Book Image

Mastering Embedded Linux Programming - Third Edition

5 (3)
By: Frank Vasquez, Chris Simmonds

Overview of this book

If you’re looking for a book that will demystify embedded Linux, then you’ve come to the right place. Mastering Embedded Linux Programming is a fully comprehensive guide that can serve both as means to learn new things or as a handy reference. The first few chapters of this book will break down the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. After that, you will learn how to create each of these elements from scratch and automate the process using Buildroot and the Yocto Project. As you progress, the book will show you how to implement an effective storage strategy for flash memory chips and install updates to a device remotely once it’s deployed. You’ll also learn about the key aspects of writing code for embedded Linux, such as how to access hardware from apps, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters demonstrate how to debug your code, whether it resides in apps or in the Linux kernel itself. You’ll also cover the different tracers and profilers that are available for Linux so that you can quickly pinpoint any performance bottlenecks in your system. By the end of this Linux book, you’ll be able to create efficient and secure embedded devices using Linux.
Table of Contents (27 chapters)
1
Section 1: Elements of Embedded Linux
10
Section 2: System Architecture and Design Decisions
18
Section 3: Writing Embedded Applications
22
Section 4: Debugging and Optimizing Performance

Using TFTP to load the kernel

Now that we know how to mount the root filesystem over a network using NFS, you may be wondering if there is a way to load the kernel, device tree, and initramfs over the network as well. If we can do this, the only component that needs to be written to storage on the target is the bootloader. Everything else could be loaded from the host machine. It would save time since you would not need to keep reflashing the target, and you could even get work done while the flash storage drivers are still being developed (it happens).

The Trivial File Transfer Protocol (TFTP) is the answer to the problem. TFTP is a very simple file transfer protocol, designed to be easy to implement in bootloaders such as U-Boot.

To begin with, you need to install a TFTP daemon on your host. On Ubuntu, the package to install is named tftpd-hpa:

$ sudo apt install tftpd-hpa

By default, tftpd-hpa grants read-only access to files in the /var/lib/tftpboot directory. With...