Book Image

Developing IoT Projects with ESP32

By : Vedat Ozan Oner
Book Image

Developing IoT Projects with ESP32

By: Vedat Ozan Oner

Overview of this book

Developing IoT Projects with ESP32 provides end-to-end coverage of secure data communication techniques from sensors to cloud platforms that will help you to develop production-grade IoT solutions by using the ESP32 SoC. You'll learn how to employ ESP32 in your IoT projects by interfacing with different sensors and actuators using different types of serial protocols. This book will show you how some projects require immediate output for end-users, and cover different display technologies as well as examples of driving different types of displays. The book features a dedicated chapter on cybersecurity packed with hands-on examples. As you progress, you'll get to grips with BLE technologies and BLE mesh networking and work on a complete smart home project where all nodes communicate over a BLE mesh. Later chapters will show you how IoT requires cloud connectivity most of the time and remote access to smart devices. You'll also see how cloud platforms and third-party integrations enable endless possibilities for your end-users, such as insights with big data analytics and predictive maintenance to minimize costs. By the end of this book, you'll have developed the skills you need to start using ESP32 in your next wireless IoT project and meet the project's requirements by building effective, efficient, and secure solutions.
Table of Contents (18 chapters)
1
Section 1: Using ESP32
7
Section 2: Local Network Communication
12
Section 3: Cloud Communication

RTOS options

Basically, an RTOS provides a deterministic task scheduler. Although the scheduling rules change depending on the scheduling algorithm, we know that the task we create will complete in a certain time frame within those rules. The main advantages of using an RTOS are the reduction in complexity and improved software architecture for easier maintenance.

The main real-time operating system supported by ESP-IDF is FreeRTOS. ESP-IDF uses its own version of the Xtensa port of FreeRTOS. The fundamental difference compared with the vanilla FreeRTOS is the dual-core support. In ESP-IDF FreeRTOS, you can choose one of two cores to assign a task or you can let FreeRTOS choose it. Other differences compared with the original FreeRTOS mostly stem from the dual-core support. FreeRTOS is distributed under an MIT license: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/freertos.html.

If you want to connect your ESP32 to the Amazon Web Services (AWS) IoT infrastructure, you can do that by using Amazon FreeRTOS as your RTOS choice. ESP32 is in the AWS partner device catalog and officially supported. Amazon FreeRTOS has the necessary libraries to connect to the AWS IoT and other security-related features, such as TLS, OTA updates, secure communication with HTTPS, WebSockets, and MQTT, pretty much everything to develop a secure connected device: https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_espressif.html.

Zephyr is another RTOS option with a permissive free software license, Apache 2.0. Zephyr requires an ESP32 toolchain and ESP-IDF installed on the development machine. Then, you need to configure Zephyr with them. When the configuration is ready, we use the command-line Zephyr tool, "west," for building, flash, monitoring, and debugging purposes: https://docs.zephyrproject.org/latest/boards/xtensa/esp32/doc/index.html.

The last RTOS that I want to share here is Mongoose OS. It provides a complete development environment with its web UI tool, mos. It has native integration with several cloud IoT platforms, namely, AWS IoT, Google IoT, Microsoft Azure, and IBM Watson, as well as any other IoT platform that supports MQTT or REST endpoints if you need a custom platform. Mongoose OS comes with two different licenses, one being an Apache 2.0 community edition, and the other an enterprise edition with a commercial license: https://mongoose-os.com/mos.html.