Book Image

Developing IoT Projects with ESP32

By : Vedat Ozan Oner
Book Image

Developing IoT Projects with ESP32

By: Vedat Ozan Oner

Overview of this book

Developing IoT Projects with ESP32 provides end-to-end coverage of secure data communication techniques from sensors to cloud platforms that will help you to develop production-grade IoT solutions by using the ESP32 SoC. You'll learn how to employ ESP32 in your IoT projects by interfacing with different sensors and actuators using different types of serial protocols. This book will show you how some projects require immediate output for end-users, and cover different display technologies as well as examples of driving different types of displays. The book features a dedicated chapter on cybersecurity packed with hands-on examples. As you progress, you'll get to grips with BLE technologies and BLE mesh networking and work on a complete smart home project where all nodes communicate over a BLE mesh. Later chapters will show you how IoT requires cloud connectivity most of the time and remote access to smart devices. You'll also see how cloud platforms and third-party integrations enable endless possibilities for your end-users, such as insights with big data analytics and predictive maintenance to minimize costs. By the end of this book, you'll have developed the skills you need to start using ESP32 in your next wireless IoT project and meet the project's requirements by building effective, efficient, and secure solutions.
Table of Contents (18 chapters)
1
Section 1: Using ESP32
7
Section 2: Local Network Communication
12
Section 3: Cloud Communication

Integrating with secure elements

When we want private keys in a device totally isolated from any kind of access, we can use secure elements. Let's say that in our project we have a requirement for IEEE 802.1AR-Secure Device Identity compliance. The standard says each device in the network should have a unique device identifier (DevID) that is cryptographically bound to the device to manage its whole life cycle. The clauses in the standard pretty much define the capabilities of a secure element, which protects private keys from any type of external access and provides an interface for cryptographic operations. In such a use case, a secure element can generate a private/public key pair and store the private key in its vault (secure, non-volatile memory) to prevent any access from outside, including the application code running on the host MCU. All cryptographic functions are provided by the secure element so that a host System-on-Chip (SoC), such as ESP32, can query it via the cryptographic...