Book Image

Apex Design Patterns

By : Anshul Verma, Jitendra Zaa
Book Image

Apex Design Patterns

By: Anshul Verma, Jitendra Zaa

Overview of this book

Apex is an on-demand programming language providing a complete set of features for building business applications – including data models and objects to manage data. Apex being a proprietor programming language from Salesforce to be worked with multi tenant environment is a lot different than traditional OOPs languages like Java and C#. It acts as a workflow engine for managing collaboration of the data between users, a user interface model to handle forms and other interactions, and a SOAP API for programmatic access and integration. Apex Design Patterns gives you an insight to several problematic situations that can arise while developing on Force.com platform and the usage of Design patterns to solve them. Packed with real life examples, it gives you a walkthrough from learning design patterns that Apex can offer us, to implementing the appropriate ones in your own application. Furthermore, we learn about the creational patterns that deal with object creation mechanism and structural patterns that helps to identify the relationship between entities. Also, the behavioural and concurrency patterns are put forward explaining the communication between objects and multi-threaded programming paradigm respectively. We later on, deal with the issues regarding structuring of classes, instantiating or how to give a dynamic behaviour at a runtime, with the help of anti-patterns. We learn the basic OOPs principal in polymorphic and modular way to enhance its capability. Also, best practices of writing Apex code are explained to differentiate between the implementation of appropriate patterns. This book will also explain some unique patterns that could be applied to get around governor limits. By the end of this book, you will be a maestro in developing your applications on Force.com for Salesforce
Table of Contents (12 chapters)
Apex Design Patterns
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Preface

An abstract class


An abstract class is something between inheritance and an interface. In inheritance, a child class extends a parent class, where both the classes have full implementations. In an interface, a parent class does not have any implementation and depends on child classes completely. There are scenarios where a parent class knows the common implementations needed by all child classes but the remaining implementation differs for all.

In the same game that we discussed earlier, there are multiple ways to gain points. If Mario gets any coin, then the overall score will be added (known), but there are different kinds of coins (unknown). Coins may be in blue, yellow, or different colors. Each color will add different scores.

It's time to see an abstract class in action:

public abstract class GameCoin { 
     
  public abstract Integer coinValue(); 
     
  public Integer absorbCoin(Integer existingPoint){ 
    return existingPoint + coinValue(); 
  }  
} 

The coinValue method is declared using the abstract keyword, which means that all child classes need to implement this. However, it is known that whatever this method returns, it needs to be added to the existing points; and therefore, the absorbCoin method does not need to be written again and again in all child classes. Don't get confused about how we have used an abstract method in absorbCoin. Like interfaces, we cannot instantiate an abstract class; therefore, whenever absorbCoin() is called from a child class, it will be implemented.

Let's play it out:

public class BlueCoin extends GameCoin{ 
    public override Integer coinValue(){ 
        return 50; 
    } 
} 
 
public class YellowCoin extends GameCoin{ 
   public override Integer coinValue(){ 
        return 10; 
    } 
} 

The preceding two child classes extend the  GameCoin abstract class.

The anonymous Apex code for testing is as follows:

Integer totalPoints = 0; 
GameCoin coins = new BlueCoin(); 
totalPoints = coins.absorbCoin(
  totalPoints); 
 
coins = new YellowCoin(); 
totalPoints = coins.absorbCoin(totalPoints); 
 
coins = new BlueCoin(); 
totalPoints = coins.absorbCoin(totalPoints); 
System.debug('Total points - ' + totalPoints); 

The output of this code will be as follows:

Total points - 110 

The following class diagram shows two classes that extend an abstract class and implement an abstract method.