Book Image

Haskell High Performance Programming

By : Samuli Thomasson
Book Image

Haskell High Performance Programming

By: Samuli Thomasson

Overview of this book

Haskell, with its power to optimize the code and its high performance, is a natural candidate for high performance programming. It is especially well suited to stacking abstractions high with a relatively low performance cost. This book addresses the challenges of writing efficient code with lazy evaluation and techniques often used to optimize the performance of Haskell programs. We open with an in-depth look at the evaluation of Haskell expressions and discuss optimization and benchmarking. You will learn to use parallelism and we'll explore the concept of streaming. We’ll demonstrate the benefits of running multithreaded and concurrent applications. Next we’ll guide you through various profiling tools that will help you identify performance issues in your program. We’ll end our journey by looking at GPGPU, Cloud and Functional Reactive Programming in Haskell. At the very end there is a catalogue of robust library recommendations with code samples. By the end of the book, you will be able to boost the performance of any app and prepare it to stand up to real-world punishment.
Table of Contents (21 chapters)
Haskell High Performance Programming
Credits
About the Author
About the Reviewer
www.PacktPub.com
Preface
Index

Runtime System and threads


The GHC Runtime System comes in two flavors: threaded and non-threaded. For truly single-threaded applications, it's usually better to use the default non-threaded runtime, because there's more overhead in the threaded one. The non-threaded runtime features a scheduler for light-weight GHC threads (created via forkIO), providing for single-threaded concurrent programming.

Usually though, a concurrent program benefits from being multi-threaded – that is, using multiple CPU capabilities triggered via the -N<n> RTS flag when compiled with -threaded. The Runtime System creates one system thread for every capability and schedules light-weight threads to run in parallel on its system threads.

An important caveat with the non-threaded runtime is that if a light-weight thread has blocked a system call, the whole program will block. On the threaded runtime, GHC can schedule light-weight threads to run on other system threads while the other thread is blocked on a system...