Book Image

C++ High Performance

By : Björn Andrist, Viktor Sehr
5 (1)
Book Image

C++ High Performance

5 (1)
By: Björn Andrist, Viktor Sehr

Overview of this book

C++ is a highly portable language and can be used to write both large-scale applications and performance-critical code. It has evolved over the last few years to become a modern and expressive language. This book will guide you through optimizing the performance of your C++ apps by allowing them to run faster and consume fewer resources on the device they're running on without compromising the readability of your code base. The book begins by helping you measure and identify bottlenecks in a C++ code base. It then moves on by teaching you how to use modern C++ constructs and techniques. You'll see how this affects the way you write code. Next, you'll see the importance of data structure optimization and memory management, and how it can be used efficiently with respect to CPU caches. After that, you'll see how STL algorithm and composable Range V3 should be used to both achieve faster execution and more readable code, followed by how to use STL containers and how to write your own specialized iterators. Moving on, you’ll get hands-on experience in making use of modern C++ metaprogramming and reflection to reduce boilerplate code as well as in working with proxy objects to perform optimizations under the hood. After that, you’ll learn concurrent programming and understand lock-free data structures. The book ends with an overview of parallel algorithms using STL execution policies, Boost Compute, and OpenCL to utilize both the CPU and the GPU.
Table of Contents (13 chapters)

Concurrency and parallelism

Concurrency and parallelism are two terms that are sometimes used interchangeably. However, they are not the same and it is important to understand the difference. A program is said to run concurrently if it has multiple individual control flows running during overlapping time periods. In C++, each individual control flow is represented by a thread. The threads may or may not execute at the exact same time, though. If they do, they are said to execute in parallel. For a concurrent program to run in parallel, it needs to be executed on a machine that has support for parallel execution of instructions: that is, machines with multiple CPU cores.

At first glance, it might seem obvious that we always want concurrent programs to run in parallel if possible, for efficiency reasons. However, that is not necessarily always true. A lot of synchronization primitives...