Book Image

Swift Protocol-Oriented Programming - Fourth Edition

By : Jon Hoffman
Book Image

Swift Protocol-Oriented Programming - Fourth Edition

By: Jon Hoffman

Overview of this book

Protocol-oriented programming is an incredibly powerful concept at the heart of Swift's design. Swift's standard library was developed using POP techniques, generics, and first-class value semantics; therefore, it is important for every Swift developer to understand these core concepts and take advantage of them. The fourth edition of this book is improved and updated to the latest version of the Swift programming language. This book will help you understand what protocol-oriented programming is all about and how it is different from other programming paradigms such as object-oriented programming. This book covers topics such as generics, Copy-On-Write, extensions, and of course protocols. It also demonstrates how to use protocol-oriented programming techniques via real-world use cases. By the end of this book, you will know how to use protocol-oriented programming techniques to build powerful and practical applications.
Table of Contents (11 chapters)

Associated types with protocols

When defining a protocol, there are times when it is useful to define one or more associated types. An associated type gives us a placeholder name that we can use within the protocol in place of a type. The actual type to use for the associated type is not defined until the protocol is adopted. The associated type basically says: we don't know the exact type to use; therefore, when a type adopts this protocol, it will define it. As an example, if we were to define a protocol for a queue, we would want the type that adopts the protocol to define the instance types that the queue contains rather than the protocol.

To define an associated type, we use the associatedtype keyword. Let's see how we can use associated types within a protocol. In this example, we will illustrate the Queue protocol, which will define the requirements that are needed to implement a queue:

protocol Queue  { 
    associatedtype QueueType 
    mutating func addItem(item: QueueType) 
    mutating func getItem() -> QueueType?  
    func count() -> Int 
} 
 

In this protocol, we define one associated type named QueueType. We then use this associated type twice within the protocol. First, we use it as the parameter type for the addItem() method, and then we use it again when we define the return type of the getItem() method as an optional type.

Any type that implements the Queue protocol must specify the type to use for the QueueType placeholder, and must also ensure that only items of that type are used where the protocol requires the QueueType placeholder.

Let's look at how to implement Queue in a non-generic class called IntQueue. This class will implement the Queue protocol using the integer type:

struct IntQueue: Queue  { 
    var items = [Int]() 
    mutating func addItem(item: Int) { 
        items.append(item) 
    } 
    mutating func getItem() -> Int?  { 
        if items.count > 0 { 
            return items.remove(at:  0) 
        } 
        else { 
            return  nil 
        } 
    } 
    func count() -> Int { 
        return items.count 
    } 
} 

As we can see in the IntQueue structure, we use the integer type for both the parameter type of the addItem() method and the return type of the getItem() method. In this example, we implemented the Queue protocol in a non-generic way. Generics in Swift allow us to define the type to use at runtime rather than compile time. We will show you how to use associated types with generics in Chapter 4, Generics.

Now that we have explored protocols in some detail, let's look at how we can use them in the real world. In the next section, we will look at how to use protocols to implement the delegation design pattern.