Book Image

Dancing with Python

By : Robert S. Sutor
Book Image

Dancing with Python

By: Robert S. Sutor

Overview of this book

Dancing with Python helps you learn Python and quantum computing in a practical way. It will help you explore how to work with numbers, strings, collections, iterators, and files. The book goes beyond functions and classes and teaches you to use Python and Qiskit to create gates and circuits for classical and quantum computing. Learn how quantum extends traditional techniques using the Grover Search Algorithm and the code that implements it. Dive into some advanced and widely used applications of Python and revisit strings with more sophisticated tools, such as regular expressions and basic natural language processing (NLP). The final chapters introduce you to data analysis, visualizations, and supervised and unsupervised machine learning. By the end of the book, you will be proficient in programming the latest and most powerful quantum computers, the Pythonic way.
Table of Contents (29 chapters)
Part I: Getting to Know Python
PART II: Algorithms and Circuits
PART III: Advanced Features and Libraries
Other Books You May Enjoy
Appendix C: The Complete UniPoly Class
Appendix D: The Complete Guitar Class Hierarchy
Appendix F: Production Notes

Understanding Gates and Circuits

Logical consequences are the scarecrows of fools and the beacons of wise men.

—Thomas Huxley, Science and Culture and Other Essays

Classical computers use logical gates to manipulate bits. Using them, we assemble circuits to implement more complicated processes like addition and multiplication. Eventually, we get all the software that runs on computers everywhere.

Quantum computers use qubits to significantly extend the power of bits, as we saw in section 1.11. We assemble these into quantum circuits to implement algorithms.

There is a strong connection between classical and quantum computing, and a quantum computing system is a classical computing system extended with one or more quantum devices. These devices are the physical implementations of qubits and the software and hardware that control them.

This chapter examines bits and qubits, gates that operate...