Book Image

50 Algorithms Every Programmer Should Know - Second Edition

By : Imran Ahmad
4 (5)
Book Image

50 Algorithms Every Programmer Should Know - Second Edition

4 (5)
By: Imran Ahmad

Overview of this book

The ability to use algorithms to solve real-world problems is a must-have skill for any developer or programmer. This book will help you not only to develop the skills to select and use an algorithm to tackle problems in the real world but also to understand how it works. You'll start with an introduction to algorithms and discover various algorithm design techniques, before exploring how to implement different types of algorithms, with the help of practical examples. As you advance, you'll learn about linear programming, page ranking, and graphs, and will then work with machine learning algorithms to understand the math and logic behind them. Case studies will show you how to apply these algorithms optimally before you focus on deep learning algorithms and learn about different types of deep learning models along with their practical use. You will also learn about modern sequential models and their variants, algorithms, methodologies, and architectures that are used to implement Large Language Models (LLMs) such as ChatGPT. Finally, you'll become well versed in techniques that enable parallel processing, giving you the ability to use these algorithms for compute-intensive tasks. By the end of this programming book, you'll have become adept at solving real-world computational problems by using a wide range of algorithms.
Table of Contents (22 chapters)
Free Chapter
1
Section 1: Fundamentals and Core Algorithms
7
Section 2: Machine Learning Algorithms
14
Section 3: Advanced Topics
20
Other Books You May Enjoy
21
Index

Introducing unsupervised learning

If the data is not generated randomly, it tends to exhibit certain patterns or relationships among its elements within a multi-dimensional space. Unsupervised learning involves the process of detecting and utilizing these patterns within a dataset to structure and comprehend it more effectively. Unsupervised learning algorithms uncover these patterns and use them as a foundation for imparting a certain structure to the dataset. The identification of these patterns contributes to a deeper understanding and representation of the data. Extracting patterns from raw data leads to a better understanding of the raw data.

This concept is shown in Figure 6.1:

Figure 6.1: Using unsupervised machine learning to extract patterns from unlabeled raw data

In the upcoming discussion, we will navigate through the CRISP-DM lifecycle, a popular model for the machine learning process. Within this context, we’ll pinpoint where unsupervised learning...