Book Image

50 Algorithms Every Programmer Should Know - Second Edition

By : Imran Ahmad
4 (5)
Book Image

50 Algorithms Every Programmer Should Know - Second Edition

4 (5)
By: Imran Ahmad

Overview of this book

The ability to use algorithms to solve real-world problems is a must-have skill for any developer or programmer. This book will help you not only to develop the skills to select and use an algorithm to tackle problems in the real world but also to understand how it works. You'll start with an introduction to algorithms and discover various algorithm design techniques, before exploring how to implement different types of algorithms, with the help of practical examples. As you advance, you'll learn about linear programming, page ranking, and graphs, and will then work with machine learning algorithms to understand the math and logic behind them. Case studies will show you how to apply these algorithms optimally before you focus on deep learning algorithms and learn about different types of deep learning models along with their practical use. You will also learn about modern sequential models and their variants, algorithms, methodologies, and architectures that are used to implement Large Language Models (LLMs) such as ChatGPT. Finally, you'll become well versed in techniques that enable parallel processing, giving you the ability to use these algorithms for compute-intensive tasks. By the end of this programming book, you'll have become adept at solving real-world computational problems by using a wide range of algorithms.
Table of Contents (22 chapters)
Free Chapter
1
Section 1: Fundamentals and Core Algorithms
7
Section 2: Machine Learning Algorithms
14
Section 3: Advanced Topics
20
Other Books You May Enjoy
21
Index

K-means clustering algorithm

The name of the k-means clustering algorithm comes from the fact that it tries to create a number of clusters, k, calculating the means to find the closeness between the data points. It uses a relatively simple clustering approach, but is still popular because of its scalability and speed. Algorithmically, k-means clustering uses an iterative logic that moves the centers of the clusters until they reflect the most representative data point of the grouping they belong to.It is important to note that k-means algorithms lack one of the very basic functionalities needed for clustering. That missing functionality is that for a given dataset, the k-means algorithm cannot determine the most appropriate number of clusters. The most appropriate number of clusters, k, is dependent on the number of natural groupings in a particular dataset. The philosophy behind this omission is to keep the algorithm as simple as possible, maximizing its performance. This...