Book Image

Quantum Computing Algorithms

By : Barry Burd
5 (1)
Book Image

Quantum Computing Algorithms

5 (1)
By: Barry Burd

Overview of this book

Navigate the quantum computing spectrum with this book, bridging the gap between abstract, math-heavy texts and math-avoidant beginner guides. Unlike intermediate-level books that often leave gaps in comprehension, this all-encompassing guide offers the missing links you need to truly understand the subject. Balancing intuition and rigor, this book empowers you to become a master of quantum algorithms. No longer confined to canned examples, you'll acquire the skills necessary to craft your own quantum code. Quantum Computing Algorithms is organized into four sections to build your expertise progressively. The first section lays the foundation with essential quantum concepts, ensuring that you grasp qubits, their representation, and their transformations. Moving to quantum algorithms, the second section focuses on pivotal algorithms — specifically, quantum key distribution and teleportation. The third section demonstrates the transformative power of algorithms that outpace classical computation and makes way for the fourth section, helping you to expand your horizons by exploring alternative quantum computing models. By the end of this book, quantum algorithms will cease to be mystifying as you make this knowledge your asset and enter a new era of computation, where you have the power to shape the code of reality.
Table of Contents (19 chapters)
Free Chapter
Part 1 Nuts and Bolts
Part 2 Making Qubits Work for You
Part 3 Quantum Computing Algorithms
Part 4 Beyond Gate-Based Quantum Computing


In this chapter, we developed the tools to describe a qubit. We changed a qubit’s state by sending the qubit through a quantum gate. In mathematical terms, the gate applies an operator to the qubit – an operator that we represent using a matrix.

In classical computing, things start to become interesting when we execute statements conditionally. Most languages have if statements for conditional execution. To perform conditional execution at the quantum level, we need some kind of qubit-to-qubit interaction. One qubit changes if some other qubit’s state is |1.

To achieve this interaction, we need some new operators. Each such operator acts on more than one qubit at a time. We use matrices to represent these operators. When we do, we discover some bizarre effects. That’s what the next chapter is all about.