Book Image

Quantum Computing Algorithms

By : Barry Burd
5 (1)
Book Image

Quantum Computing Algorithms

5 (1)
By: Barry Burd

Overview of this book

Navigate the quantum computing spectrum with this book, bridging the gap between abstract, math-heavy texts and math-avoidant beginner guides. Unlike intermediate-level books that often leave gaps in comprehension, this all-encompassing guide offers the missing links you need to truly understand the subject. Balancing intuition and rigor, this book empowers you to become a master of quantum algorithms. No longer confined to canned examples, you'll acquire the skills necessary to craft your own quantum code. Quantum Computing Algorithms is organized into four sections to build your expertise progressively. The first section lays the foundation with essential quantum concepts, ensuring that you grasp qubits, their representation, and their transformations. Moving to quantum algorithms, the second section focuses on pivotal algorithms — specifically, quantum key distribution and teleportation. The third section demonstrates the transformative power of algorithms that outpace classical computation and makes way for the fourth section, helping you to expand your horizons by exploring alternative quantum computing models. By the end of this book, quantum algorithms will cease to be mystifying as you make this knowledge your asset and enter a new era of computation, where you have the power to shape the code of reality.
Table of Contents (19 chapters)
Free Chapter
2
Part 1 Nuts and Bolts
7
Part 2 Making Qubits Work for You
10
Part 3 Quantum Computing Algorithms
14
Part 4 Beyond Gate-Based Quantum Computing

Matrix representation of bits and gates

For an inkling of the way matrices work in computer logic, we introduce two new ways to represent bits:

  • In Dirac notation, the zero bit is |0, and the one bit is |1.

The | combination of characters is called a ket.

  • In vector notation, the zero bit is open parentheses table row 1 row 0 end table close parentheses, and the one bit is open parentheses table row 0 row 1 end table close parentheses.

These new ways to represent bits may seem cumbersome and redundant, but they’re really very helpful. If you like, think of the numbers in a vector as amounts ranging from zero to one. A vector’s top entry is an amount of zero-ness and the vector’s bottom entry is an amount of one-ness.

Figure 1.16 – The correspondence between vector notation and Dirac notation

Figure 1.16 – The correspondence between vector notation and Dirac notation

This business about all zero-ness and all one-ness will make more sense when you read about qubits in the next chapter.

Disclaimer

Most authors reserve kets and vectors for qubits (quantum bits). For...